A134469 Decimal expansion of -zeta(1/2)/sqrt(2*Pi).
5, 8, 2, 5, 9, 7, 1, 5, 7, 9, 3, 9, 0, 1, 0, 6, 7, 0, 2, 0, 5, 1, 7, 7, 1, 6, 4, 1, 8, 7, 6, 3, 1, 1, 5, 4, 7, 2, 9, 0, 9, 3, 8, 7, 0, 1, 9, 8, 6, 5, 4, 7, 0, 4, 8, 2, 3, 6, 9, 3, 9, 4, 2, 0, 6, 6, 5, 3, 0, 6, 8, 7, 5, 9, 6, 4, 9, 8, 9, 4, 6, 0, 4, 1, 7, 9, 1, 9, 0, 6, 8, 3, 4, 7, 7, 6, 0, 3, 0, 5, 6, 8, 5, 6, 2, 7
Offset: 0
Examples
0.58259715793901067020517716418763115472909387019865...
References
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 5.9, p. 326.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- Joseph T. Chang and Yuval Peres, Ladder heights, Gaussian random walks and the Riemann zeta function, Annals of Probability, 25(2) (1997) 787-802.
- Alain Comtet and Satya N. Majumdar, Precise Asymptotics for a Random Walker’s Maximum, J. Stat. Mech. Theor. Exp. 06 (2005) P06013, arXiv:cond-mat/0506195 [cond-mat.stat-mech], 2005.
- Hans J. H. Tuenter, Overshoot in the Case of Normal Variables: Chernoff's Integral, Latta's Observation and Wijsman's Sum, Sequential Analysis, 26(4) (2007) 481-488.
- Robert A. Wijsman, Overshoot in the Case of Normal Variables, Sequential Analysis, 23(2):275-284, 2004.
Crossrefs
Programs
-
Maple
Digits:=100; evalf(-Zeta(1/2)/sqrt(2*Pi));
-
Mathematica
RealDigits[-Zeta[1/2]/Sqrt[2*Pi], 10, 100][[1]] (* G. C. Greubel, Mar 27 2018 *)
-
PARI
-zeta(1/2)/sqrt(2*Pi) \\ Charles R Greathouse IV, Mar 10 2016
Extensions
More decimals from Vaclav Kotesovec, Mar 21 2016
Comments