cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A134470 Continued fraction expansion of -zeta(1/2)/sqrt(2*Pi).

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 8, 1, 5, 1, 1, 1, 12, 5, 1, 1, 5, 1, 12, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 2, 2, 2, 1, 11, 1, 6, 1, 3, 2, 1, 1, 1, 1, 1, 2, 6, 7, 1, 4, 2, 1, 1, 1, 13, 1, 1, 1, 2, 4, 2, 11, 1, 2, 5, 1, 8, 1, 78, 10, 1, 64, 1, 29, 1, 3, 1, 1, 1, 2, 1, 12, 1, 2, 1, 4, 1, 2, 1, 2, 32, 1, 92, 1, 14, 1, 10, 12, 2, 3, 16, 2, 1, 1, 1, 1, 8, 3, 15, 1, 2, 2, 1, 4, 4, 2, 8, 1, 1557, 3, 1, 69, 1, 5, 3, 11, 1, 1
Offset: 0

Views

Author

Hans J. H. Tuenter, Oct 27 2007

Keywords

Crossrefs

Cf. A134469 (Decimal expansion), A134471 (Numerators of continued fraction convergents), A134472 (Denominators of continued fraction convergents).

Programs

  • Maple
    Digits:=100; cfrac(-Zeta(1/2)/sqrt(2*Pi),30,'quotients');
  • Mathematica
    ContinuedFraction[ -Zeta[1/2]/Sqrt[2 \[Pi]], 100] (* J. Mulder (jasper.mulder(AT)planet.nl), Jan 25 2010 *)
  • PARI
    default(realprecision,1000);
    c=-zeta(1/2)/sqrt(2*Pi); /* == 0.582597157... (A134469) */
    contfrac(c) /* gives 967 terms */

Extensions

More terms from J. Mulder (jasper.mulder(AT)planet.nl), Jan 25 2010

A134471 Numerators of the convergents of the continued fraction expansion of -zeta(1/2)/sqrt(2*Pi).

Original entry on oeis.org

0, 1, 1, 3, 4, 7, 60, 67, 395, 462, 857, 1319, 16685, 84744, 101429, 186173, 1032294, 1218467, 15653898, 16872365, 32526263, 49398628, 81924891, 213248410, 295173301, 508421711, 803595012, 1312016723, 3427628458, 11594902097, 26617432652, 64829767401
Offset: 1

Views

Author

Hans J. H. Tuenter, Oct 27 2007

Keywords

Crossrefs

Cf. A134469 (Decimal expansion), A134470 (Continued fraction expansion), A134472 (Denominators of continued fraction convergents).

Programs

  • Mathematica
    Numerator[Convergents[-Zeta[1/2]/Sqrt[2Pi],30]] (* Harvey P. Dale, Sep 07 2015 *)

Extensions

More terms from Harvey P. Dale, Sep 07 2015

A134472 Denominators of the convergents of the continued fraction expansion of -zeta(1/2)/sqrt(2*Pi).

Original entry on oeis.org

1, 1, 2, 5, 7, 12, 103, 115, 678, 793, 1471, 2264, 28639, 145459, 174098, 319557, 1771883, 2091440, 26869163, 28960603, 55829766, 84790369, 140620135, 366030639, 506650774, 872681413, 1379332187, 2252013600, 5883359387, 19902091761, 45687542909, 111277177579, 268241898067
Offset: 13

Views

Author

Hans J. H. Tuenter, Oct 27 2007

Keywords

Crossrefs

Cf. A134469 (Decimal expansion), A134470 (Continued fraction expansion), A134471 (Numerators of continued fraction convergents).

Programs

  • Mathematica
    Denominator[Convergents[-Zeta[1/2]/Sqrt[2 Pi], 50]] (* G. C. Greubel, Mar 28 2018 *)

Extensions

Terms a(33) onward added by G. C. Greubel, Mar 28 2018

A096616 Decimal expansion of 2/3 + zeta(1/2)/sqrt(2*Pi).

Original entry on oeis.org

0, 8, 4, 0, 6, 9, 5, 0, 8, 7, 2, 7, 6, 5, 5, 9, 9, 6, 4, 6, 1, 4, 8, 9, 5, 0, 2, 4, 7, 9, 0, 3, 5, 5, 1, 1, 9, 3, 7, 5, 7, 2, 7, 9, 6, 4, 6, 8, 0, 1, 1, 9, 6, 1, 8, 4, 2, 9, 7, 2, 7, 2, 4, 6, 0, 0, 1, 3, 5, 9, 7, 9, 0, 7, 0, 1, 6, 7, 7, 2, 0, 6, 2, 4, 8, 7, 4, 7, 5, 9, 8, 3, 1, 8, 9, 0, 6, 3, 6, 0, 9, 8
Offset: 0

Views

Author

Eric W. Weisstein, Jun 30 2004

Keywords

Examples

			0.0840695087...
		

References

  • David H. Bailey, Jonathan M. Borwein, Neil J. Calkin, Roland Girgensohn, D. Russell Luke and Victor H. Moll, Experimental Mathematics in Action, Wellesley, MA: A K Peters, 2007, pp. 18 and 227.
  • Jonathan Borwein, David Bailey and Roland Girgensohn, Experimentation in Mathematics: Computational Paths to Discovery, Wellesley, MA: A K Peters, 2004, pp. 15-17.

Crossrefs

Programs

  • Mathematica
    Flatten[{0, RealDigits[2/3 + Zeta[1/2]/Sqrt[2*Pi], 10, 100][[1]]}] (* Vaclav Kotesovec, Aug 16 2015 *)
  • PARI
    2/3 + zeta(1/2)/sqrt(2*Pi) \\ Michel Marcus, Aug 15 2015

Formula

Equals Sum_{k>=1} (1/sqrt(2*Pi*k) - k^k/(k!*exp(k))). - Amiram Eldar, Oct 13 2020
Equals 2/3 - A134469. - R. J. Mathar, Dec 17 2024
Showing 1-4 of 4 results.