A134481 Row sums of triangle A134480.
1, 5, 20, 50, 100, 175, 280, 420, 600, 825, 1100, 1430, 1820, 2275, 2800, 3400, 4080, 4845, 5700, 6650, 7700, 8855, 10120, 11500, 13000, 14625, 16380, 18270, 20300, 22475, 24800, 27280, 29920, 32725, 35700, 38850, 42180, 45695
Offset: 0
Examples
a(2) = 20 = sum of row 3 terms of triangle A134480: (9 + 7 + 4). a(3) = 50 = (1, 3, 3, 1) dot (1, 4, 11, 4) = (1 + 12 + 33 + 4). a(2) = 20 = 2*1 + 3*2 + 4*3; a(5) = 5*1 + 6*2 + 7*3 + 8*4 + 9*5 + 10*6. - _Bruno Berselli_, Dec 16 2013
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Magma
I:=[1, 5, 20, 50, 100]; [n le 5 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jun 29 2012
-
Mathematica
CoefficientList[Series[1+5x/(1-x)^4,{x,0,40}],x] (* Vincenzo Librandi, Jun 29 2012 *)
Formula
a(n) = 5*binomial(n+2,3) for n>0. - Milan Janjic, Dec 28 2007
G.f.: 1 + 5*x / (1-x)^4. - R. J. Mathar, Apr 04 2012
a(n) = Sum_{i=0..n} (n+i)*(1+i) for n > 0. - Bruno Berselli, Dec 16 2013
E.g.f.: 1 + 5*exp(x)*x*(6 + 6*x + x^2)/6. - Stefano Spezia, Oct 09 2023
Comments