cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A242153 Number T(n,k) of ascent sequences of length n with exactly k flat steps; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 2, 2, 1, 0, 5, 6, 3, 1, 0, 16, 20, 12, 4, 1, 0, 61, 80, 50, 20, 5, 1, 0, 271, 366, 240, 100, 30, 6, 1, 0, 1372, 1897, 1281, 560, 175, 42, 7, 1, 0, 7795, 10976, 7588, 3416, 1120, 280, 56, 8, 1, 0, 49093, 70155, 49392, 22764, 7686, 2016, 420, 72, 9, 1, 0
Offset: 0

Views

Author

Joerg Arndt and Alois P. Heinz, May 05 2014

Keywords

Comments

In general, column k is asymptotic to Pi^(2*k-5/2) / (k! * 6^(k-2) * sqrt(3) * exp(Pi^2/12)) * (6/Pi^2)^n * n! * sqrt(n). - Vaclav Kotesovec, Aug 27 2014

Examples

			Triangle T(n,k) begins:
00:      1;
01:      1,     0;
02:      1,     1,     0;
03:      2,     2,     1,     0;
04:      5,     6,     3,     1,    0;
05:     16,    20,    12,     4,    1,    0;
06:     61,    80,    50,    20,    5,    1,   0;
07:    271,   366,   240,   100,   30,    6,   1,  0;
08:   1372,  1897,  1281,   560,  175,   42,   7,  1, 0;
09:   7795, 10976,  7588,  3416, 1120,  280,  56,  8, 1, 0;
10:  49093, 70155, 49392, 22764, 7686, 2016, 420, 72, 9, 1, 0;
...
The 15 ascent sequences of length 4 (dots denote zeros) with their number of flat steps are:
01:  [ . . . . ]   3
02:  [ . . . 1 ]   2
03:  [ . . 1 . ]   1
04:  [ . . 1 1 ]   2
05:  [ . . 1 2 ]   1
06:  [ . 1 . . ]   1
07:  [ . 1 . 1 ]   0
08:  [ . 1 . 2 ]   0
09:  [ . 1 1 . ]   1
10:  [ . 1 1 1 ]   2
11:  [ . 1 1 2 ]   1
12:  [ . 1 2 . ]   0
13:  [ . 1 2 1 ]   0
14:  [ . 1 2 2 ]   1
15:  [ . 1 2 3 ]   0
There are 5 sequences without flat steps, 6 with one flat step, etc., giving row [5, 6, 3, 1, 0] for n=4.
		

Crossrefs

Row sums give A022493.
T(2n,n) gives A242164.
Main diagonal and lower diagonals give: A000007, A000012, A000027(n+1), A002378(n+1), A134481(n+1), A130810(n+4).
Cf. A137251 (the same for ascents), A238858 (the same for descents).

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, 1, expand(add(
          `if`(j=i, x, 1) *b(n-1, j, t+`if`(j>i, 1, 0)), j=0..t+1)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, -1$2)):
    seq(T(n), n=0..12);
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, Expand[Sum[If[j == i, x, 1]*b[n-1, j, t + If[j>i, 1, 0]], {j, 0, t+1}]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 0, n}]][ b[n, -1, -1]]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Jan 06 2015, after Alois P. Heinz *)

A360546 Triangle read by rows: T(n, m) = (n+1-m)*C(2*n+2-m, m)*C(3*n-3*m+2, n-m+1)/(2*n-m+2).

Original entry on oeis.org

1, 5, 2, 28, 20, 3, 165, 168, 50, 4, 1001, 1320, 588, 100, 5, 6188, 10010, 5940, 1568, 175, 6, 38760, 74256, 55055, 19800, 3528, 280, 7, 245157, 542640, 482664, 220220, 54450, 7056, 420, 8, 1562275, 3922512, 4069800, 2252432, 715715, 130680, 12936, 600, 9
Offset: 0

Views

Author

Vladimir Kruchinin, Feb 11 2023

Keywords

Examples

			Triangle begins:
     1;
     5,     2;
    28,    20,    3;
   165,   168,   50,    4;
  1001,  1320,  588,  100,   5;
  6188, 10010, 5940, 1568, 175, 6;
		

Crossrefs

Programs

  • Maple
    A360546 := proc(n, k) m := n-k+1; (1/3)*binomial(3*m, m)*binomial(m + n, k) end:
    seq(print(seq(A360546(n, k), k = 0..n)), n = 0..8); # Peter Luschny, Feb 11 2023
  • Maxima
    T(n,m):=if n
    				

Formula

G.f.: -1/(2*x) + (sqrt(3)*cot((1/3)*arcsin((3*sqrt(3)*sqrt(x))/(2- 2*x*y))))/ (2*sqrt(x*(-27*x + 4*(-1+x*y)^2))).

A134480 A134478 * A000012.

Original entry on oeis.org

1, 3, 2, 9, 7, 4, 18, 15, 11, 6, 30, 26, 21, 15, 8, 45, 40, 34, 27, 19, 10, 63, 57, 50, 42, 33, 23, 12, 84, 77, 69, 60, 50, 39, 27, 14, 108, 100, 91, 81, 70, 58, 45, 31, 16, 135, 126, 116, 105, 93, 80, 66, 51, 35, 18
Offset: 0

Views

Author

Gary W. Adamson, Oct 27 2007

Keywords

Comments

Row sums = A134481: (1, 5, 20, 50, 100, 175, ...).
Left border = A134479.

Examples

			First few rows of the triangle:
   1;
   3,  2;
   9,  7,  4;
  18, 15, 11,  6;
  30, 26, 21, 15,  8;
  45, 40, 34, 27, 19, 10;
  63, 57, 50, 42, 33, 23, 12;
  ...
		

Crossrefs

Formula

A134478 * A000012 as infinite lower triangular matrices. Triangle read by rows, partial sums of A134478 terms starting from the right.
Showing 1-3 of 3 results.