cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134507 Number of rectangles in a pyramid built with squares. The squares counted in A092498 are excluded.

Original entry on oeis.org

0, 4, 19, 57, 134, 269, 486, 813, 1281, 1926, 2788, 3910, 5340, 7130, 9335, 12015, 15234, 19059, 23562, 28819, 34909, 41916, 49928, 59036, 69336, 80928, 93915, 108405, 124510, 142345, 162030, 183689, 207449, 233442, 261804, 292674, 326196
Offset: 1

Views

Author

Philippe Lallouet (philip.lallouet(AT)orange.fr), Jan 19 2008

Keywords

Comments

At the first step, the pyramid contains only one unitary square. At each step of rank n we add a row of 2*n-1 squares below the previous pyramid. The sequence is the number of rectangles of any size which can be seen in this pyramid of height n.
..........._.
|..|.........|..|
||......_|__|
..........|..|..|..|
..0.......||__|| 3 rectangles 2X1, 1 rectangle 3X1

Examples

			G.f. = 4*x^2 + 19*x^3 + 57*x^4 + 134*x^5 + 269*x^6 + 486*x^7 + 813*x^8 + ...
		

Crossrefs

Cf. A092498.

Programs

  • Magma
    I:=[0,4,19,57,134,269,486]; [n le 7 select I[n] else 4*Self(n-1)-6*Self(n-2)+5*Self(n-3)-5*Self(n-4)+6*Self(n-5)-4*Self(n-6)+Self(n-7): n in [1..50]]; // Vincenzo Librandi, Mar 01 2014
  • Mathematica
    a[ n_] := SeriesCoefficient[ x^2 (4 + 3 x + 5 x^2) / ((1 - x)^5 (1 + x + x^2)), {x, 0, n}]; (* Michael Somos, Feb 25 2014 *)
    a[ n_] := Quotient[ 3 n^4 + 5 n^3 - 3 n^2 - 3 n + 2, 18]; (* Michael Somos, Feb 25 2014 *)
    CoefficientList[Series[-x (5 x^2 + 3 x + 4)/((x - 1)^5 (x^2 + x + 1)), {x, 0, 40}], x] (* _Vincenzo Librandi Mar 01 2014 *)
  • PARI
    {a(n) = (3*n^4 + 5*n^3 - 3*n^2 - 3*n + 2) \ 18}; /* Michael Somos, Feb 17 2008 */
    

Formula

For n == 0 mod 3, a(n) = n*(3*n^3+5*n^2-3*n-3)/18; for n == 1 mod 3, a(n) = (n-1)*(3*n^3+8*n^2+5*n+2)/18; for n == 2 mod 3, a(n) = (3*n^4+5*n^3-3*n^2-3*n+2)/18. [corrected and edited by Michel Marcus, Apr 09 2024]
G.f.: -x^2*(5*x^2+3*x+4)/((x-1)^5*(x^2+x+1)). [Colin Barker, Nov 16 2012]
a(n) = (3*n^4+5*n^3-3*n^2-5*n+6*floor((n+1)/3))/18. - Luce ETIENNE, Jul 31 2015