cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134594 a(n) = n^2 + 10*n + 5: coefficients of the irrational part of (1 + sqrt(n))^5.

Original entry on oeis.org

5, 16, 29, 44, 61, 80, 101, 124, 149, 176, 205, 236, 269, 304, 341, 380, 421, 464, 509, 556, 605, 656, 709, 764, 821, 880, 941, 1004, 1069, 1136, 1205, 1276, 1349, 1424, 1501, 1580, 1661, 1744, 1829, 1916, 2005, 2096, 2189, 2284, 2381, 2480, 2581, 2684
Offset: 0

Views

Author

Artur Jasinski, Nov 04 2007

Keywords

Comments

(1+sqrt(n))^5 = (5*n^2 + 10*n + 1) + (n^2 + 10*n + 5)*sqrt(n). For coefficients of the rational part see A134593.

Crossrefs

Cf. A134593.

Programs

  • GAP
    List([0..50],n->n^2+10*n+5); # Muniru A Asiru, Nov 24 2018
  • Magma
    [n^2 +10*n +5: n in [0..50]]; // G. C. Greubel, Nov 23 2018
    
  • Mathematica
    Table[(n^2 + 10n + 5), {n, 0, 50}]
    LinearRecurrence[{3,-3,1}, {5,16,29}, 50] (* G. C. Greubel, Nov 23 2018 *)
  • PARI
    a(n)=n^2+10*n+5 \\ Charles R Greathouse IV, Jun 17 2017
    
  • Sage
    [n^2 +10*n +5 for n in range(50)] # G. C. Greubel, Nov 23 2018
    

Formula

a(n) = ((1+sqrt(n))^5 - (5*n^2 + 10*n + 1))/sqrt(n), for n > 0. [corrected by Jon E. Schoenfield, Nov 23 2018]
G.f.: (1+x)*(5-4*x)/(1-x)^3. - R. J. Mathar, Nov 14 2007
a(n) = 2*n + a(n-1) + 9 (with a(0)=5). - Vincenzo Librandi, Nov 23 2010
E.g.f.: (5 +11*x +x^2)*exp(x). - G. C. Greubel, Nov 23 2018