cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A134605 Composite numbers such that the square root of the sum of squares of their prime factors (with multiplicity) is an integer.

Original entry on oeis.org

16, 48, 81, 320, 351, 486, 512, 625, 1080, 1260, 1350, 1375, 1792, 1836, 2070, 2145, 2175, 2401, 2730, 2772, 3072, 3150, 3510, 4104, 4305, 4625, 4650, 4655, 4998, 5880, 6000, 6174, 6545, 7098, 7128, 7182, 7650, 7791, 7889, 7956, 9030, 9108, 9295, 9324
Offset: 1

Views

Author

Hieronymus Fischer, Nov 11 2007

Keywords

Examples

			a(2)=48 since 48=2*2*2*2*3 and sqrt(4*2^2+3^2)=sqrt(25)=5.
		

Crossrefs

Programs

  • Mathematica
    srssQ[n_]:=IntegerQ[Sqrt[Total[Flatten[Table[#[[1]],#[[2]]]&/@ FactorInteger[ n]]^2]]]; Select[Range[10000],CompositeQ[#]&&srssQ[#]&] (* Harvey P. Dale, Jan 22 2019 *)
  • PARI
    is(n)=my(f=factor(n)); issquare(sum(i=1,#f~,f[i,1]^2*f[i,2])) && !isprime(n) && n>1 \\ Charles R Greathouse IV, Apr 29 2015

A134608 Composite numbers such that the cube root of the sum of cubes of their prime factors is an integer.

Original entry on oeis.org

256, 588, 693, 3840, 6561, 14157, 17787, 141960, 178360, 313600, 337365, 350000, 387072, 390625, 407442, 432000, 466560, 531674, 535815, 541310, 664909, 697851, 1044582, 1262056, 1264640, 1299272, 1374327, 1547570, 1608575, 1660360
Offset: 1

Views

Author

Hieronymus Fischer, Nov 11 2007

Keywords

Examples

			a(3)=693, since 693=3*3*7*11 and (2*3^3+7^3+11^3)^(1/3)=1728^(1/3)=12.
		

Crossrefs

Programs

  • Mathematica
    criQ[n_]:=IntegerQ[Surd[Total[Flatten[Table[#[[1]],#[[2]]]&/@ FactorInteger[ n]]^3],3]]; Select[Range[1670000],CompositeQ[#] && criQ[#]&] (* Harvey P. Dale, Sep 19 2021 *)
  • PARI
    lista(m) = {for (i=2, m, if (! isprime(i), f = factor(i); s = sum (j=1, length(f~), f[j,1]^3*f[j,2]); if (ispower(s, 3), print1(i, ", "));););} \\ Michel Marcus, Apr 14 2013

Extensions

Minor edits by Hieronymus Fischer, Apr 20 2013

A078137 Numbers which can be written as sum of squares>1.

Original entry on oeis.org

4, 8, 9, 12, 13, 16, 17, 18, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 19 2002

Keywords

Comments

A078134(a(n))>0.
Numbers which can be written as a sum of squares of primes. - Hieronymus Fischer, Nov 11 2007
Equivalently, numbers which can be written as a sum of squares of 2 and 3. Proof for numbers m>=24: if m=4*(k+6), k>=0, then m=(k+6)*2^2; if m=4*(k+6)+1 than m=(k+4)*2^2+3^2; if m=4*(k+6)+2 then m=(k+2)*2^2+2*3^2; if m=4*(k+6)+3 then m=k*2^2+3*3^2. Clearly, the numbers a(n)<24 can also be written as sums of squares of 2 and 3. Explicit representation as a sum of squares of 2 and 3 for numbers m>23: m=c*2^2+d*3^2, where c:=(floor(m/4) - 2*(m mod 4))>=0 and d:=m mod 4. - Hieronymus Fischer, Nov 11 2007

Crossrefs

Programs

Formula

a(n)=n + 12 for n >= 12. - Hieronymus Fischer, Nov 11 2007

Extensions

Edited by N. J. A. Sloane, Oct 17 2009 at the suggestion of R. J. Mathar.

A134620 Numbers such that the sum of 4th power of their prime factors is a prime.

Original entry on oeis.org

6, 10, 12, 14, 22, 34, 38, 40, 45, 46, 74, 82, 117, 118, 122, 126, 142, 152, 158, 171, 194, 231, 262, 278, 296, 345, 358, 363, 376, 384, 387, 429, 432, 446, 454, 458, 482, 486, 490, 500, 507, 522, 536, 550, 566, 584, 626, 627, 634, 639, 663, 675, 686, 704, 705
Offset: 1

Views

Author

Hieronymus Fischer, Nov 11 2007

Keywords

Comments

Prime factors must be taken with multiplicity. - Harvey P. Dale, May 23 2012
The calculation of higher terms is time-consuming, since for any number of the form 2*p with a prime number p > 10^5 the primality test have to be accomplished for a number > 10^20. - Hieronymus Fischer, May 21 2013

Examples

			a(2) = 10, since 10 = 2*5 and 2^4+5^4 = 641 which is prime.
a(9) = 45, since 45 = 3*3*5 and 3^4+3^4+5^4 = 787 which is prime.
a(9883) = 333314, since 333314 = 3*166657 and 2^4+166657^4 = 771425941499397811217 which is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000],PrimeQ[Total[Flatten[Table[First[#],{Last[#]}]&/@ FactorInteger[#]]^4]]&] (* Harvey P. Dale, May 23 2012 *)

A134606 Numbers such that the square root of the sum of squares of their prime factors is a nonprime integer.

Original entry on oeis.org

16, 81, 351, 512, 625, 1080, 1260, 1350, 1375, 1792, 1836, 2070, 2145, 2175, 2401, 2730, 2772, 3510, 4104, 4305, 4625, 4650, 4655, 4998, 5880, 6000, 6545, 7098, 7182, 7791, 7889, 7956, 9030, 9108, 9295, 9324, 10098, 10368, 10545, 11628, 11935, 12096
Offset: 1

Views

Author

Hieronymus Fischer, Nov 11 2007

Keywords

Comments

No prime number is a term. - Hieronymus Fischer, Apr 19 2011

Examples

			a(3)=351, since 351=3*3*3*13 and sqrt(3*3^2+13^2)=sqrt(196)=14.
		

Crossrefs

Programs

  • Mathematica
    f[{a_,b_}]:=Table[a,b];Select[Range[2,12096],!PrimeQ[Sqrt[Total[Flatten[f/@FactorInteger[#]]^2]]]&&IntegerQ[Sqrt[Total[Flatten[f/@FactorInteger[#]]^2]]]&] (* James C. McMahon, Apr 09 2025 *)

A134609 Numbers such that the cube root of the sum of cubes of their prime factors is a nonprime integer.

Original entry on oeis.org

256, 588, 693, 3840, 6561, 17787, 178360, 313600, 337365, 350000, 387072, 390625, 407442, 432000, 531674, 535815, 541310, 664909, 697851, 1044582, 1262056, 1264640, 1299272, 1374327, 1547570, 1660360, 1740024, 2160756, 2578968
Offset: 1

Views

Author

Hieronymus Fischer, Nov 11 2007

Keywords

Comments

No prime number is a term. Hieronymus Fischer, Apr 20 2013

Examples

			a(2)=588, since 588=2*2*3*7*7 and (2*2^3+3^3+2*7^3)^(1/3)=729^(1/3)=81.
		

Crossrefs

Extensions

Minor Edits by Hieronymus Fischer, Apr 20 2013

A134607 Composite numbers such that the square root of the sum of squares of their prime factors is a prime.

Original entry on oeis.org

48, 320, 486, 3072, 3150, 6174, 7128, 7650, 10890, 11466, 15000, 18018, 18810, 25578, 27846, 29400, 30240, 39546, 40590, 45056, 45927, 53010, 54600, 55062, 59202, 73440, 75582, 77418, 80910, 85800, 90552, 92106, 95238, 96642, 98838
Offset: 1

Views

Author

Hieronymus Fischer, Nov 11 2007

Keywords

Comments

Numbers included in A134605, but not in A134606. a(1)=48 is the minimal number with this property.

Examples

			a(2)=320, since 320=2*2*2*2*2*2*5 and sqrt(6*2^2+5^2)=sqrt(49)=7.
		

Crossrefs

Programs

  • Mathematica
    sspfpQ[n_]:=PrimeQ[Sqrt[Total[Flatten[Table[#[[1]],{#[[2]]}]&/@ FactorInteger[ n]]^2]]]; upto=100000;With[{comps=Complement[ Range[ upto],Prime[ Range[PrimePi[upto]]]]},Select[comps,sspfpQ]] (* Harvey P. Dale, Jul 10 2013 *)

Extensions

Minor edits by Hieronymus Fischer, Apr 19 2013

A134610 Composite numbers such that the cube root of the sum of cubes of their prime factors is a prime.

Original entry on oeis.org

14157, 141960, 466560, 1608575, 3097055, 5338710, 6235076, 16017300, 22353408, 24948000, 25073792, 25564544, 27843750, 29761408, 30570408, 31894350, 40837825, 44175248, 46120064, 49867818, 55814400, 56141963, 71214803, 77450890, 92682405
Offset: 1

Views

Author

Hieronymus Fischer, Nov 11 2007

Keywords

Comments

Numbers included in A134608, but not in A134609. a(1)=14157 is the minimal number with this property.
The prime factors are taken by multiplicity.

Examples

			a(2)=141960 since 141960=2*2*2*3*5*7*13*13 and (3*2^3+3^3+5^3+7^3+2*13^3)^(1/3)=4913^(1/3)=17.
		

Crossrefs

Extensions

Minor edits and additional terms by the author, Apr 15 2013
Showing 1-8 of 8 results.