cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134681 Number of digits of all the divisors of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 4, 3, 5, 3, 7, 3, 5, 5, 6, 3, 7, 3, 8, 5, 6, 3, 10, 4, 6, 5, 8, 3, 11, 3, 8, 6, 6, 5, 12, 3, 6, 6, 11, 3, 11, 3, 9, 8, 6, 3, 14, 4, 9, 6, 9, 3, 11, 6, 11, 6, 6, 3, 18, 3, 6, 8, 10, 6, 12, 3, 9, 6, 12, 3, 17, 3, 6, 9, 9, 6, 12, 3, 15, 7, 6, 3, 18, 6, 6, 6, 12, 3, 18, 6, 9, 6, 6, 6, 18
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 06 2007

Keywords

Comments

Also number of digits of the concatenation of all divisors of n (A037278). - Jaroslav Krizek, Jun 15 2011

Crossrefs

Programs

  • Maple
    A134681 := proc(n)
        add(A055642(d),d=numtheory[divisors](n)) ;
    end proc:
    seq(A134681(n),n=1..80) ; # R. J. Mathar, Feb 21 2025
  • Mathematica
    Array[Total[IntegerLength[Divisors[#]]]&,100] (* Harvey P. Dale, Jun 08 2013 *)
  • PARI
    a(n) = sumdiv(n, d, #digits(d)); \\ Michel Marcus, Sep 01 2023
    
  • Python
    from sympy import divisors
    def a(n): return sum(len(str(d)) for d in divisors(n, generator=True))
    print([a(n) for n in range(1, 97)]) # Michael S. Branicky, Nov 03 2023

Formula

a(n) = A055642(A037278(n)) = Number of digits of the concatenation of all divisors of n.
From Sida Li, Sep 01 2023: (Start)
a(n) = Sum_{d divides n} (floor(log_10(d))+1).
log_10(Product_{d divides n} d) <= a(n) <= log_10(Product_{d divides n} d) + sigma_0(n), where sigma_0(n) = A000005(n).
Equivalently, sigma_0(n)*log_10(n)/2 <= a(n) <= sigma_0(n)*log_10(n)/2 + sigma_0(n), obtained by formula in A007955.
For x >= 5, c2*log(x)^2 + c1*log(x) + c0 <= (1/x)*Sum_{n<=x} a(n) <= c2*log(x)^2 + (c1+1)*log(x) + 2*c0, where c2 = 1/(2*log(10)), c1 = (gamma-1)/log(10), c0 = 2*gamma-1, and gamma is Euler's constant. This is obtained by hyperbola trick for Sum_{n<=x} sigma_0(n), and Abel partial summation on Sum_{n<=x} sigma_0(n)*log(n). (End)

Extensions

New name from Jaroslav Krizek, Jun 15 2011