cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A134962 Numbers n with property that for each single digit d of n, we can also see the decimal expansion of d^2 as a substring of n. Also n may not contain any 0 digits.

Original entry on oeis.org

1, 11, 111, 1111, 11111, 111111, 1111111, 3648169, 3649816, 3681649, 3698164, 8163649, 8164369, 8164936, 8169364, 9364816, 9368164, 9816364, 9816436, 11111111, 13648169, 13649816, 13681649, 13698164, 16364819, 16364981
Offset: 1

Views

Author

Zak Seidov and N. J. A. Sloane, Feb 03 2008

Keywords

Comments

The number of terms less than 10^k: 1, 2, 3, 4, 5, 6, 19, 410, 8083, ... . - Robert G. Wilson v, Jan 06 2012

Examples

			In 3648169, for 3 we can see 9, for 6 we can see 36, for 4 we can see 16, for 8 we can see 64, for 1 we can see 1 and for 9 we can see 81.
		

Crossrefs

Programs

  • Mathematica
    fQ[n_] := (id = IntegerDigits@ n; Union[id][[1]] != 0 && Sort[ StringPosition[ ToString[n], ToString[#]] & /@ Evaluate[ id^2]][[1]] != {}); k = 0; lst = {}; While[k < 2*10^7, If[fQ@k, AppendTo[lst, k]; Print@ k]; k++] (* Robert G. Wilson v, Jan 06 2012 *)
  • Python
    sq = {d:str(int(d)**2) for d in "123456789"}
    def ok(n): return "0" not in (s:=str(n)) and all(sq[d] in s for d in set(s))
    print([k for k in range(10**7) if ok(k)]) # Michael S. Branicky, May 05 2023

Extensions

a(9) onwards computed by David Applegate, Feb 03 2008

A134698 Self-power numbers (or SPN's): numbers n with property that for each single digit d of n, we can also see the decimal expansion of the d-th power of some number as a substring of n and also n contains no 0's or 1's.

Original entry on oeis.org

32564, 232564, 256432, 322564, 325642, 325643, 325644, 325645, 325646, 325648, 325664, 332564, 432564, 532564, 632564, 643256, 832564, 2232564, 2256432, 2322564, 2325642, 2325643, 2325644, 2325645, 2325646, 2325648, 2325664, 2332564, 2432564, 2532564
Offset: 1

Views

Author

Eric Angelini, Jul 05 2005

Keywords

Comments

Computed by M. F. Hasler, Feb 02 2008, Feb 03 2008
There are an infinite number of SPN's, since for example we can prefix n by any digit of n.

Examples

			n = 32564 is a member because we can see a cube (64) in n, a square (4 or 25), a fifth power (32), a sixth power (64) and a fourth power (256).
		

Crossrefs

Extensions

More terms from M. F. Hasler, Feb 02 2008

A134439 Numbers n with property that for each digit d from 1 to 9, we can also see the decimal expansion of d^2 as a substring of n.

Original entry on oeis.org

2536497816, 2536498167, 2536781649, 2536816497, 2573649816, 2573681649, 2578163649, 2578164936, 2581636497, 2581649367, 2581649736, 2581673649, 3625781649, 3625816497, 3649257816, 3649258167, 3649725816, 3649781625
Offset: 1

Views

Author

Zak Seidov, Feb 02 2008

Keywords

Examples

			In the first number, for 2 we can see 4, for 5 we can see 25, for 3 we can see 9, for 6 we can see 36, for 4 we can see 16, for 9 we can see 81, for 8 we can see 64, for 1 we can see 1 and for 7 we can see 49.
		

Crossrefs

Extensions

Corrected by David Applegate, Feb 09 2008

A134948 Self-factorial numbers: numbers n with property that for each single digit d of n, we can also see the decimal expansion of d! as a substring of n.

Original entry on oeis.org

1, 2, 10, 11, 12, 21, 22, 24, 100, 101, 102, 110, 111, 112, 120, 121, 122, 124, 201, 210, 211, 212, 221, 222, 224, 241, 242, 244, 424, 1000, 1001, 1002, 1010, 1011, 1012, 1020, 1021, 1022, 1024, 1100, 1101, 1102, 1110, 1111, 1112, 1120, 1121, 1122, 1124, 1200
Offset: 1

Views

Author

Keywords

Comments

As 9 does not occur in d! for all d in {0..9}, all self-factorials cannot contain 9 as a digit, cf. A007095. - Reinhard Zumkeller, Sep 26 2014

Examples

			24 is a self-factorial number because we can see both 2! = 2 and 4! = 24 in the decimal expansion 24.
		

Crossrefs

Programs

  • Haskell
    import Data.List (nub, sort, isInfixOf)
    a134948 n = a134948_list !! (n-1)
    a134948_list = filter h [0..] where
       h x = all (`isInfixOf` xs)
                 (map (fss !!) $ map (read . return) $ sort $ nub xs)
             where xs = show x
       fss = map show $ take 10 a000142_list
    -- Reinhard Zumkeller, Sep 26 2014
  • Maple
    isA134948 := proc(n) local nbase10,dgs,d,dfac ; nbase10 := convert(n,base,10) ; dgs := convert(nbase10,set) ; for d in dgs do dfac := convert(d!,base,10) ; if verify(dfac,nbase10,'sublist') = false then RETURN(false) ; fi ; od: RETURN(true) ; end: for n from 1 to 10000 do if isA134948(n) then printf("%d ",n) ; fi ; od: # R. J. Mathar, Feb 05 2008

Extensions

a(1) - a(18) computed by N. J. A. Sloane, Feb 02 2008
a(19) onwards from David Applegate, Feb 09 2008
More terms from R. J. Mathar, Feb 05 2008

A135015 Numbers n with property that for each single digit d of n, we can also see the decimal expansion of the d-th prime as a substring of n. Also n may not contain any zero digits.

Original entry on oeis.org

11235, 11253, 11325, 11352, 11523, 11532, 21135, 21153, 23115, 23511, 25113, 25311, 31125, 31152, 32115, 32511, 35112, 35211, 51123, 51132, 52113, 52311, 53112, 53211, 111235, 111253, 111325, 111352, 111523, 111532, 112135, 112153, 112235, 112253
Offset: 1

Views

Author

David Applegate and N. J. A. Sloane, Feb 10 2008

Keywords

Crossrefs

Programs

  • Maple
    filter:= proc (n) local L, LP;
      L := convert(n, base, 10);
      if has(L, 0) then return false end if;
    if has(L, 1) and not has(L, 2) then return false end if;
    if has(L, 2) and not has(L, 3) then return false end if;
    if has(L, 3) and not has(L, 5) then return false end if;
    if has(L, 4) and not has(L, 7) then return false end if;
    LP := [seq([L[i], L[i+1]], i = 1 .. nops(L)-1)];
    if has(L, 5) and not member([1, 1], LP) then return false end if;
    if has(L, 6) and not member([3, 1], LP) then return false end if;
    if has(L, 7) and not member([7, 1], LP) then return false end if;
    if has(L, 8) and not member([9, 1], LP) then return false end if;
    if has(L, 9) and not member([3, 2], LP) then return false end if;
    true
    end proc:
    select(filter, [$1..1.5*10^5]);

A135016 Numbers n with property that for each single digit d of n, we can also see the decimal expansion of 2^d as a substring of n. Also n may not contain any zero digits.

Original entry on oeis.org

1642, 2164, 11642, 12164, 16264, 16412, 16421, 16422, 16424, 16426, 16442, 16462, 16642, 21164, 21641, 21642, 21644, 21646, 21664, 22164, 24164, 26164, 26416, 41642, 42164, 61642, 62164, 64162, 64216, 111642, 112164, 116264, 116412, 116421, 116422
Offset: 1

Views

Author

David Applegate and N. J. A. Sloane, Feb 10 2008

Keywords

Crossrefs

A135411 Numbers n with property that for each single digit d of n, we can also see the decimal expansion of d+2 as a substring of n.

Original entry on oeis.org

113579, 113597, 113759, 113795, 113957, 113975, 115379, 115397, 115739, 115793, 115937, 115973, 117359, 117395, 117539, 117593, 117935, 117953, 119357, 119375, 119537, 119573, 119735, 119753, 311579, 311597, 311759, 311795, 311957, 311975
Offset: 1

Views

Author

Zak Seidov, Feb 17 2008

Keywords

Comments

There are exactly 120 six-digit such integers.
These include 24 primes: 113759, 113957, 115793, 117539, 311957, 351179, 375119, 511793, 531197, 539711, 573119, 579113, 579311, 591137, 593711, 711539, 739511, 751139, 751193, 759113, 793511, 911357, 937511, 971153;
and 36 semiprimes: 113579, 115397, 115937, 117953, 119537, 119573, 119753, 311579, 311759, 359117, 375911, 379511, 391157, 395711, 397115, 511379, 511397, 511739, 539117, 571139, 593117, 711593, 731195, 753119, 753911, 791135, 911573, 931157, 935117, 935711, 937115, 951137, 957113, 957311, 975113, 975311.

Crossrefs

Showing 1-7 of 7 results.