Original entry on oeis.org
1, 3, 8, 23, 74, 257, 930, 3439, 12878, 48629, 184766, 705443, 2704168, 10400613, 40116614, 155117535, 601080406, 2333606237, 9075135318, 35345263819, 137846528840, 538257874461, 2104098963742, 8233430727623, 32247603683124, 126410606437777, 495918532948130
Offset: 0
-
[n+(n+1)*Catalan(n): n in [0..40]]; // G. C. Greubel, May 28 2024
-
Table[Binomial[2n,n]+n,{n,0,40}] (* Harvey P. Dale, Dec 10 2011 *)
-
[n+binomial(2*n,n) for n in range(41)] # G. C. Greubel, May 28 2024
Original entry on oeis.org
1, 4, 16, 58, 208, 754, 2770, 10294, 38608, 145858, 554266, 2116294, 8112466, 31201798, 120349798, 465352558, 1803241168, 7000818658, 27225405898, 106035791398, 413539586458, 1614773623318, 6312296891158, 24700292182798, 96742811049298, 379231819313254
Offset: 0
-
[3*(n+1)*Catalan(n)-2: n in [0..40]]; // G. C. Greubel, May 28 2024
-
Table[3*Binomial[2*n,n]-2, {n,0,40}] (* G. C. Greubel, May 28 2024 *)
-
a(n) = 3*binomial(2*n, n) - 2; \\ Michel Marcus, Nov 22 2013
-
[3*binomial(2*n,n) -2 for n in range(41)] # G. C. Greubel, May 28 2024
A134763
a(n) = (1/2)*( (1+(-1)^n)*A134762(n/2) + 2*(1-(-1)^n) ).
Original entry on oeis.org
1, 2, 4, 2, 16, 2, 58, 2, 208, 2, 754, 2, 2770, 2, 10294, 2, 38608, 2, 145858, 2, 554266, 2, 2116294, 2, 8112466, 2, 31201798, 2, 120349798, 2, 465352558, 2, 1803241168, 2, 7000818658, 2, 27225405898, 2, 106035791398, 2, 413539586458, 2, 1614773623318, 2, 6312296891158, 2
Offset: 0
First few terms of the sequence are: (1, 2, 4, 2, 16, 2, 58, ...), interpolating two's in the sequence A134762: (1, 4, 16, 58, ...).
-
[3*((n+1) mod 2)*Binomial(n, Floor(n/2)) - 2*(-1)^n : n in [0..40]]; // G. C. Greubel, May 28 2024
-
Table[(3/2)*(1+(-1)^n)*Binomial[n,n/2] -2*(-1)^n, {n,0,40}] (* G. C. Greubel, May 28 2024 *)
-
[3*((n+1)%2)*binomial(n, n//2) - 2*(-1)^n for n in range(41)] # G. C. Greubel, May 28 2024
Name change and terms a(14) onward added by
G. C. Greubel, May 28 2024
A141597
Triangle T(n,k) = 2*binomial(n,k)^2 - 1, read by rows, 0<=k<=n.
Original entry on oeis.org
1, 1, 1, 1, 7, 1, 1, 17, 17, 1, 1, 31, 71, 31, 1, 1, 49, 199, 199, 49, 1, 1, 71, 449, 799, 449, 71, 1, 1, 97, 881, 2449, 2449, 881, 97, 1, 1, 127, 1567, 6271, 9799, 6271, 1567, 127, 1, 1, 161, 2591, 14111, 31751, 31751, 14111, 2591, 161, 1, 1, 199, 4049, 28799, 88199, 127007, 88199, 28799, 4049, 199, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 7, 1;
1, 17, 17, 1;
1, 31, 71, 31, 1;
1, 49, 199, 199, 49, 1;
1, 71, 449, 799, 449, 71, 1;
1, 97, 881, 2449, 2449, 881, 97, 1;
1, 127, 1567, 6271, 9799, 6271, 1567, 127, 1;
1, 161, 2591, 14111, 31751, 31751, 14111, 2591, 161, 1;
1, 199, 4049, 28799, 88199, 127007, 88199, 28799, 4049, 199, 1;
-
A141597:= func< n,k | 2*Binomial(n,k)^2 - 1 >;
[A141597(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 15 2024
-
T[n_, m_, k_, l_]:= (1+l)*Binomial[n, m]^k -l;
Table[T[n,m,2,1], {n,0,12}, {m,0,n}]//Flatten
-
def A141597(n,k): return 2*binomial(n,k)^2 -1
flatten([[A141597(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Sep 15 2024
Showing 1-4 of 4 results.
Comments