A134799 a(n) = 3^((3^n - 1)/2).
1, 3, 81, 1594323, 12157665459056928801, 5391030899743293631239539488528815119194426882613553319203
Offset: 0
Examples
.........|..................G_1 **** .......__|__................G_2 .........| **** .__|_____|_____|__..........G_3 ...|.....|.....| .........| .......__|__ .........| ****. ..._|_........._|_..........G_4 _|__|_____|_____|__|_ .|._|_....|...._|_.| ....|.....|.....| ......_|__|__|_ .......|._|_.| ..........| **** G_1 = o---. = rooted tree with one edge and one leaf node. For n > 0, G_{n+1} is obtained from G_n by splitting each leaf node into three.
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..7
- Author?, Mitsumata tree
- X. Gourdon and P. Sebah, Pythagoras' Constant.
Programs
-
Mathematica
3^((3^Range[0, 6] - 1)/2) (* Paolo Xausa, Oct 17 2024 *)
Formula
a(n) is conjectured to be one-third the reduced denominator of b(n) = (3/2)*b(n-1)*(1 - b(n-1)^2); b(0) = 1/3. - Steven Finch, Oct 08 2024
Extensions
Edited by N. J. A. Sloane, Jan 29 2008
a(5) from Andrew Howroyd, Oct 07 2024
Comments