A134816 Padovan's spiral numbers.
1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, 200, 265, 351, 465, 616, 816, 1081, 1432, 1897, 2513, 3329, 4410, 5842, 7739, 10252, 13581, 17991, 23833, 31572, 41824, 55405, 73396, 97229, 128801, 170625, 226030, 299426, 396655
Offset: 1
Examples
a(6)=3 because 6+4=10 and A000931(10)=3. G.f. = x + x^2 + x^3 + 2*x^4 + 2*x^5 + 3*x^6 + 4*x^7 + 5*x^8 + 7*x^9 + ... - _Michael Somos_, Jan 01 2019
Links
- Muniru A Asiru, Table of n, a(n) for n = 1..1500
- J.-L. Baril, Avoiding patterns in irreducible permutations, Discrete Mathematics and Theoretical Computer Science, Vol. 17, No. 3 (2016).
- Eric Fernando Bravo, On concatenations of Padovan and Perrin numbers, Math. Commun. (2023) Vol 28, 105-119.
- Alain Faisant, On the Padovan sequence, arXiv:1905.07702 [math.NT], 2019.
- Ed Harris, Pete McPartlan and Brady Haran, The Plastic Ratio, Numberphile video (2019).
- Mariana Nagy, Simon R. Cowell, and Valeriu Beiu, On the Construction of 3D Fibonacci Spirals, Mathematics (2024) Vol. 12, No. 2, 201.
- Christian Richter, Tilings of convex polygons by equilateral triangles of many different sizes, Discrete Mathematics 343.3 (2020): 111745. (See Section 2.1.)
- Yuksel Soykan, Vedat Irge, and Erkan Tasdemir, A Comprehensive Study of K-Circulant Matrices Derived from Generalized Padovan Numbers, Asian Journal of Probability and Statistics 26 (12):152-70, (2024). See p. 154.
- S. J. Tedford, Combinatorial identities for the Padovan numbers, Fib. Q., 57:4 (2019), 291-298.
- Wikipedia, Padovan triangles
- Index entries for linear recurrences with constant coefficients, signature (0,1,1).
Crossrefs
Programs
-
GAP
a:=[1,1,1];; for n in [4..50] do a[n]:=a[n-2]+a[n-3]; od; a; # Muniru A Asiru, Aug 12 2018
-
Maple
a:=proc(n, p, q) option remember: if n<=p then 1 elif n<=q then a(n-1, p, q)+a(n-p, p, q) else add(a(n-k, p, q), k=p..q) fi end: seq(a(n, 2, 3), n=0..100); # Robert FERREOL, Oct 16 2017
-
Mathematica
Drop[ CoefficientList[ Series[(1 - x^2)/(1 - x^2 - x^3), {x, 0, 52}], x], 5] (* Robert G. Wilson v, Sep 30 2009 *) a[n_]=Round[Root[23#^3-5#-1&,1]Root[#^3-#-1&,1]^n ];a[Range[100]] (* OR *) LinearRecurrence[{0, 1, 1}, {1, 1, 1}, 100] (* Federico Provvedi, Feb 12 2025 *)
-
PARI
{a(n) = if( n>=0, polcoeff( (x + x^2) / (1 - x^2 - x^3) + x * O(x^n), n), polcoeff( (x + x^2) / (1 + x - x^3) + x * O(x^-n), -n))}; /* Michael Somos, Jan 01 2019 */
-
PARI
my(x='x+O('x^50)); Vec(x*(1+x)/(1-x^2-x^3)) \\ Joerg Arndt, Feb 07 2025
Formula
a(n) = A000931(n+4).
G.f.: x * (1 + x) / (1 - x^2 - x^3) = x / (1 - x / (1 - x^2 / (1 + x / (1 - x / (1 + x))))). - Michael Somos, Jan 03 2013
a(1)=a(2)=a(3)=1, a(n) = a(n-2) + a(n-3) for n > 3. - Robert FERREOL, Oct 16 2017
a(n) = round(x*rho^n), where the Silver constant rho = Limit_{n->oo} a(n+1)/a(n) = A060006, and x is the real solution of the cubic 23*x^3-5*x-1 = 0. - Federico Provvedi, Feb 12 2025
Extensions
More terms from Robert G. Wilson v, Sep 30 2009
First comment clarified by Omar E. Pol, Aug 12 2018
Comments