A152545 Padovan-Fibonacci triangle, read by rows, where the first column equals the Padovan spiral numbers (A134816), while the row sums equal the Fibonacci numbers (A000045).
1, 1, 1, 1, 2, 1, 2, 2, 1, 3, 2, 2, 1, 4, 3, 3, 2, 1, 5, 4, 4, 3, 3, 1, 1, 7, 5, 5, 5, 4, 3, 3, 1, 1, 9, 7, 7, 7, 5, 5, 5, 4, 3, 1, 1, 1, 12, 9, 9, 9, 8, 7, 7, 7, 5, 4, 4, 4, 1, 1, 1, 1, 16, 12, 12, 12, 12, 9, 9, 9, 8, 8, 8, 7, 5, 4, 4, 4, 1, 1, 1, 1, 1, 21, 16, 16, 16, 16, 13, 12, 12, 12, 12, 12, 11, 9, 8
Offset: 0
Examples
Triangle begins: [1], [1], [1,1], [2,1], [2,2,1], [3,2,2,1], [4,3,3,2,1], [5,4,4,3,3,1,1], [7,5,5,5,4,3,3,1,1], [9,7,7,7,5,5,5,4,3,1,1,1], [12,9,9,9,8,7,7,7,5,4,4,4,1,1,1,1], [16,12,12,12,12,9,9,9,8,8,8,7,5,4,4,4,1,1,1,1,1], [21,16,16,16,16,13,12,12,12,12,12,11,9,8,8,8,5,5,5,5,4,1,1,1,1,1,1,1], [28,21,21,21,21,20,16,16,16,16,16,16,13,13,12,12,12,12,11,11,8,6,5,5,5,5,5,5,1,1,1,1,1,1,1,1,1], [37,28,28,28,28,28,22,21,21,21,21,21,20,20,20,20,18,16,16,16,14,13,12,12,12,12,12,11,6,6,6,6,6,5,5,5,5,1,1,1,1,1,1,1,1,1,1,1,1], [49,37,37,37,37,37,33,28,28,28,28,28,28,28,28,28,27,22,22,21,21,21,20,20,20,20,20,18,17,17,16,16,14,12,12,12,12,7,6,6,6,6,6,6,6,6,6,6,5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1], ... ILLUSTRATION OF RECURRENCE. Start out with row 0 and row 1 consisting of a single '1'. To obtain any given row of this irregular triangle, first sum the prior two rows term-by-term; for rows 7 and 8 we get: [5,4,4,3,3,1,1] + [7,5,5,5,4,3,3,1,1] = [12,9,9,8,7,4,4,1,1]. Place markers in an array so that the number of contiguous markers in each row correspond to the term-by-term sums like so: -------------------------- 12:o o o o o o o o o o o o 9: o o o o o o o o o - - - 9: o o o o o o o o o - - - 8: o o o o o o o o - - - - 7: o o o o o o o - - - - - 4: o o o o - - - - - - - - 4: o o o o - - - - - - - - 1: o - - - - - - - - - - - 1: o - - - - - - - - - - - -------------------------- Then count the markers by columns to obtain the desired row; here, the number of markers in each column yields row 9: [9,7,7,7,5,5,5,4,3,1,1,1]. Continuing in this way generates all the rows of this triangle.
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..261
Programs
-
PARI
{T(n,k)=local(G000931=(1-x^2)/(1-x^2-x^3+x*O(x^(n+6))));if(n<0,0,if(n<2&k==0,1, polcoeff(sum(j=0,polcoeff(G000931,n+5)-1,(x^(T(n-1,j)+T(n-2,j)) - 1)/(x-1)),k) ))}; /* To print, use Padovan g.f. to get the number of terms in row n: */ for(n=0,10,for(k=0,polcoeff((1-x^2)/(1-x^2-x^3+x*O(x^(n+6))),n+6)-1,print1(T(n,k),","));print(""))
Comments