cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 29 results. Next

A000931 Padovan sequence (or Padovan numbers): a(n) = a(n-2) + a(n-3) with a(0) = 1, a(1) = a(2) = 0.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, 200, 265, 351, 465, 616, 816, 1081, 1432, 1897, 2513, 3329, 4410, 5842, 7739, 10252, 13581, 17991, 23833, 31572, 41824, 55405, 73396, 97229, 128801, 170625
Offset: 0

Views

Author

Keywords

Comments

Number of compositions of n into parts congruent to 2 mod 3 (offset -1). - Vladeta Jovovic, Feb 09 2005
a(n) is the number of compositions of n into parts that are odd and >= 3. Example: a(10)=3 counts 3+7, 5+5, 7+3. - David Callan, Jul 14 2006
Referred to as N0102 in R. K. Guy's "Anyone for Twopins?" - Rainer Rosenthal, Dec 05 2006
Zagier conjectures that a(n+3) is the maximum number of multiple zeta values of weight n > 1 which are linearly independent over the rationals. - Jonathan Sondow and Sergey Zlobin (sirg_zlobin(AT)mail.ru), Dec 20 2006
Starting with offset 6: (1, 1, 2, 2, 3, 4, 5, ...) = INVERT transform of A106510: (1, 1, -1, 0, 1, -1, 0, 1, -1, ...). - Gary W. Adamson, Oct 10 2008
Starting with offset 7, the sequence 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, ... is called the Fibonacci quilt sequence by Catral et al., in Fib. Q. 2017. - N. J. A. Sloane, Dec 24 2021
Triangle A145462: right border = A000931 starting with offset 6. Row sums = Padovan sequence starting with offset 7. - Gary W. Adamson, Oct 10 2008
Starting with offset 3 = row sums of triangle A146973 and INVERT transform of [1, -1, 2, -2, 3, -3, ...]. - Gary W. Adamson, Nov 03 2008
a(n+5) corresponds to the diagonal sums of "triangle": 1; 1; 1,1; 1,1; 1,2,1; 1,2,1; 1,3,3,1; 1,3,3,1; 1,4,6,4,1; ..., rows of Pascal's triangle (A007318) repeated. - Philippe Deléham, Dec 12 2008
With offset 3: (1, 0, 1, 1, 1, 2, 2, ...) convolved with the tribonacci numbers prefaced with a "1": (1, 1, 1, 2, 4, 7, 13, ...) = the tribonacci numbers, A000073. (Cf. triangle A153462.) - Gary W. Adamson, Dec 27 2008
a(n) is also the number of strings of length (n-8) from an alphabet {A, B} with no more than one A or 2 B's consecutively. (E.g., n = 4: {ABAB,ABBA,BABA,BABB,BBAB} and a(4+8) = 5.) - Toby Gottfried, Mar 02 2010
p(n):=A000931(n+3), n >= 1, is the number of partitions of the numbers {1,2,3,...,n} into lists of length two or three containing neighboring numbers. The 'or' is inclusive. For n=0 one takes p(0)=1. For details see the W. Lang link. There the explicit formula for p(n) (analog of the Binet-de Moivre formula for Fibonacci numbers) is also given. Padovan sequences with different inputs are also considered there. - Wolfdieter Lang, Jun 15 2010
Equals the INVERTi transform of Fibonacci numbers prefaced with three 1's, i.e., (1 + x + x^2 + x^3 + x^4 + 2x^5 + 3x^6 + 5x^7 + 8x^8 + 13x^9 + ...). - Gary W. Adamson, Apr 01 2011
When run backwards gives (-1)^n*A050935(n).
a(n) is the top left entry of the n-th power of the 3 X 3 matrix [0, 0, 1; 1, 0, 1; 0, 1, 0] or of the 3 X 3 matrix [0, 1, 0; 0, 0, 1; 1, 1, 0]. - R. J. Mathar, Feb 03 2014
Figure 4 of Brauchart et al., 2014, shows a way to "visualize the Padovan sequence as cuboid spirals, where the dimensions of each cuboid made up by the previous ones are given by three consecutive numbers in the sequence". - N. J. A. Sloane, Mar 26 2014
a(n) is the number of closed walks from a vertex of a unidirectional triangle containing an opposing directed edge (arc) between the second and third vertices. Equivalently the (1,1) entry of A^n where the adjacency matrix of digraph is A=(0,1,0;0,0,1;1,1,0). - David Neil McGrath, Dec 19 2014
Number of compositions of n-3 (n >= 4) into 2's and 3's. Example: a(12)=5 because we have 333, 3222, 2322, 2232, and 2223. - Emeric Deutsch, Dec 28 2014
The Hoffman (2015) paper "offers significant evidence that the number of quantities needed to generate the weight-n multiple harmonic sums mod p is" a(n). - N. J. A. Sloane, Jun 24 2016
a(n) gives the number of compositions of n-5 into odd parts where the order of the 1's does not matter. For example, a(11)=4 counts the following compositions of 6: (5,1)=(1,5), (3,3), (3,1,1,1)=(1,3,1,1)=(1,1,3,1)=(1,1,1,3), (1,1,1,1,1,1). - Gregory L. Simay, Aug 04 2016
For n > 6, a(n) is the number of maximal matchings in the (n-5)-path graph, maximal independent vertex sets and minimal vertex covers in the (n-6)-path graph, and minimal edge covers in the (n-5)-pan graph and (n-3)-path graphs. - Eric W. Weisstein, Mar 30, Aug 03, and Aug 07 2017
From James Mitchell and Wilf A. Wilson, Jul 21 2017: (Start)
a(2n + 5) + 2n - 4, n > 2, is the number of maximal subsemigroups of the monoid of order-preserving mappings on a set with n elements.
a(n + 6) + n - 3, n > 3, is the number of maximal subsemigroups of the monoid of order-preserving or reversing mappings on a set with n elements.
(End)
Has the property that the largest of any four consecutive terms equals the sum of the two smallest. - N. J. A. Sloane, Aug 29 2017 [David Nacin points out that there are many sequences with this property, such as 1,1,1,2,1,1,1,2,1,1,1,2,... or 2,3,4,5,2,3,4,5,2,3,4,5,... or 2,2,1,3,3, 4,1,4, 5,5,1,6,6, 7,1,7, 8,8,1,9,9, 10,1,10, ... (spaces added for clarity), and a conjecture I made here in 2017 was simply wrong. I have deleted it. - N. J. A. Sloane, Oct 23 2018]
a(n) is also the number of maximal cliques in the (n+6)-path complement graph. - Eric W. Weisstein, Apr 12 2018
a(n+8) is the number of solus bitstrings of length n with no runs of 3 zeros. - Steven Finch, Mar 25 2020
Named after the architect Richard Padovan (b. 1935). - Amiram Eldar, Jun 08 2021
Shannon et al. (2006) credit a French architecture student Gérard Cordonnier with the discovery of these numbers.
For n >= 3, a(n) is the number of sequences of 0s and 1s of length (n-2) that begin with a 0, end with a 0, contain no two consecutive 0s, and contain no three consecutive 1s. - Yifan Xie, Oct 20 2022
For n >= 2, a(n+5) is the number of ways to tile the 1xn board with dominoes and squares (ie. size 1x1) such that are either none or one squares between dominoes, none or one squares at both ends of the board, and there is at least one domino. For example, for n=6, a(11)=4 since the tilings are |2|2, |22|, 2|2| and 222 (where 2 represents a domino and | a square). - Enrique Navarrete, Aug 31 2024

Examples

			G.f. = 1 + x^3 + x^5 + x^6 + x^7 + 2*x^8 + 2*x^9 + 3*x^10 + 4*x^11 + ...
		

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 47, ex. 4.
  • Minerva Catral, Pari L. Ford, Pamela E. Harris, Steven J. Miller, Dawn Nelson, Zhao Pan, and Huanzhong Xu, Legal Decompositions Arising from Non-positive Linear Recurrences, Fib. Quart., 55:3 (2017), 252-275. [Note that there is an earlier version of this paper, with only five authors, on the arXiv in 2016. Note to editors: do not merge these two citations. - N. J. A. Sloane, Dec 24 2021]
  • Richard K. Guy, "Anyone for Twopins?" in D. A. Klarner, editor, The Mathematical Gardner. Prindle, Weber and Schmidt, Boston, 1981, pp. 10-11.
  • Silvia Heubach and Toufik Mansour, Combinatorics of Compositions and Words, CRC Press, 2010.
  • A. G. Shannon, P. G. Anderson and A. F. Horadam, Properties of Cordonnier, Perrin and Van der Laan numbers, International Journal of Mathematical Education in Science and Technology, Volume 37:7 (2006), 825-831. See P_n.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Ian Stewart, L'univers des nombres, "La sculpture et les nombres", pp. 19-20, Belin-Pour La Science, Paris, 2000.
  • Hans van der Laan, Het plastische getal. XV lessen over de grondslagen van de architectonische ordonnantie. Leiden, E.J. Brill, 1967.
  • Don Zagier, Values of zeta functions and their applications, in First European Congress of Mathematics (Paris, 1992), Vol. II, A. Joseph et al. (eds.), Birkhäuser, Basel, 1994, pp. 497-512.

Crossrefs

The following are basically all variants of the same sequence: A000931, A078027, A096231, A124745, A133034, A134816, A164001, A182097, A228361 and probably A020720. However, each one has its own special features and deserves its own entry.
Closely related to A001608.
Doubling every term gives A291289.

Programs

  • GAP
    a:=[1,0,0];; for n in [4..50] do a[n]:=a[n-2]+a[n-3]; od; a; # G. C. Greubel, Dec 30 2019
    
  • Haskell
    a000931 n = a000931_list !! n
    a000931_list = 1 : 0 : 0 : zipWith (+) a000931_list (tail a000931_list)
    -- Reinhard Zumkeller, Feb 10 2011
    
  • Magma
    I:=[1,0,0]; [n le 3 select I[n] else Self(n-2) + Self(n-3): n in [1..60]]; // Vincenzo Librandi, Jul 21 2015
    
  • Maple
    A000931 := proc(n) option remember; if n = 0 then 1 elif n <= 2 then 0 else procname(n-2)+procname(n-3); fi; end;
    A000931:=-(1+z)/(-1+z^2+z^3); # Simon Plouffe in his 1992 dissertation; gives sequence without five leading terms
    a[0]:=1; a[1]:=0; a[2]:=0; for n from 3 to 50 do a[n]:=a[n-2]+a[n-3]; end do; # Francesco Daddi, Aug 04 2011
  • Mathematica
    CoefficientList[Series[(1-x^2)/(1-x^2-x^3), {x, 0, 50}], x]
    a[0]=1; a[1]=a[2]=0; a[n_]:= a[n]= a[n-2] + a[n-3]; Table[a[n], {n, 0, 50}] (* Robert G. Wilson v, May 04 2006 *)
    LinearRecurrence[{0,1,1}, {1,0,0}, 50] (* Harvey P. Dale, Jan 10 2012 *)
    Table[RootSum[-1 -# +#^3 &, 5#^n -6#^(n+1) +4#^(n+2) &]/23, {n,0,50}] (* Eric W. Weisstein, Nov 09 2017 *)
  • PARI
    Vec((1-x^2)/(1-x^2-x^3) + O(x^50)) \\ Charles R Greathouse IV, Feb 11 2011
    
  • PARI
    {a(n) = if( n<0, polcoeff(1/(1+x-x^3) + x * O(x^-n), -n), polcoeff( (1 - x^2)/(1-x^2-x^3) + x * O(x^n), n))}; /* Michael Somos, Sep 18 2012 */
    
  • Python
    def aupton(nn):
        alst = [1, 0, 0]
        for n in range(3, nn+1): alst.append(alst[n-2]+alst[n-3])
        return alst
    print(aupton(49)) # Michael S. Branicky, Mar 28 2022
  • Sage
    def A000931_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-x^2)/(1-x^2-x^3) ).list()
    A000931_list(50) # G. C. Greubel, Dec 30 2019
    

Formula

G.f.: (1-x^2)/(1-x^2-x^3).
a(n) is asymptotic to r^n / (2*r+3) where r = 1.3247179572447... = A060006, the real root of x^3 = x + 1. - Philippe Deléham, Jan 13 2004
a(n)^2 + a(n+2)^2 + a(n+6)^2 = a(n+1)^2 + a(n+3)^2 + a(n+4)^2 + a(n+5)^2 (Barniville, Question 16884, Ed. Times 1911).
a(n+5) = a(0) + a(1) + ... + a(n).
a(n) = central and lower right terms in the (n-3)-th power of the 3 X 3 matrix M = [0 1 0 / 0 0 1 / 1 1 0]. E.g., a(13) = 7. M^10 = [3 5 4 / 4 7 5 / 5 9 7]. - Gary W. Adamson, Feb 01 2004
G.f.: 1/(1 - x^3 - x^5 - x^7 - x^9 - ...). - Jon Perry, Jul 04 2004
a(n+4) = Sum_{k=0..floor((n-1)/2)} binomial(floor((n+k-2)/3), k). - Paul Barry, Jul 06 2004
a(n+3) = Sum_{k=0..floor(n/2)} binomial(k, n-2k). - Paul Barry, Sep 17 2004, corrected by Greg Dresden and Zi Ye, Jul 06 2021
a(n+3) is diagonal sum of A026729 (as a number triangle), with formula a(n+3) = Sum_{k=0..floor(n/2)} Sum_{i=0..n-k} (-1)^(n-k+i)*binomial(n-k, i)*binomial(i+k, i-k). - Paul Barry, Sep 23 2004
a(n) = a(n-1) + a(n-5) = A003520(n-4) + A003520(n-13) = A003520(n-3) - A003520(n-9). - Henry Bottomley, Jan 30 2005
a(n+3) = Sum_{k=0..floor(n/2)} binomial((n-k)/2, k)(1+(-1)^(n-k))/2. - Paul Barry, Sep 09 2005
The sequence 1/(1-x^2-x^3) (a(n+3)) is given by the diagonal sums of the Riordan array (1/(1-x^3), x/(1-x^3)). The row sums are A000930. - Paul Barry, Feb 25 2005
a(n) = A023434(n-7) + 1 for n >= 7. - David Callan, Jul 14 2006
a(n+5) corresponds to the diagonal sums of A030528. The binomial transform of a(n+5) is A052921. a(n+5) = Sum_{k=0..floor(n/2)} Sum_{k=0..n} (-1)^(n-k+i)*binomial(n-k, i)binomial(i+k+1, 2k+1). - Paul Barry, Jun 21 2004
r^(n-1) = (1/r)*a(n) + r*a(n+1) + a(n+2), where r = 1.32471... is the real root of x^3 - x - 1 = 0. Example: r^8 = (1/r)*a(9) + r*a(10) + a(11) = (1/r)*2 + r*3 + 4 = 9.483909... - Gary W. Adamson, Oct 22 2006
a(n) = (r^n)/(2r+3) + (s^n)/(2s+3) + (t^n)/(2t+3) where r, s, t are the three roots of x^3-x-1. - Keith Schneider (schneidk(AT)email.unc.edu), Sep 07 2007
a(n) = -k*a(n-1) + a(n-2) + (k+1)a(n-2) + k*a(n-4), n > 3, for any value of k. - Gary Detlefs, Sep 13 2010
From Francesco Daddi, Aug 04 2011: (Start)
a(0) + a(2) + a(4) + a(6) + ... + a(2*n) = a(2*n+3).
a(0) + a(3) + a(6) + a(9) + ... + a(3*n) = a(3*n+2)+1.
a(0) + a(5) + a(10) + a(15) + ... + a(5*n) = a(5*n+1)+1.
a(0) + a(7) + a(14) + a(21) + ... + a(7*n) = (a(7*n) + a(7*n+1) + 1)/2. (End)
a(n+3) = Sum_{k=0..floor((n+1)/2)} binomial((n+k)/3,k), where binomial((n+k)/3,k)=0 for noninteger (n+k)/3. - Nikita Gogin, Dec 07 2012
a(n) = A182097(n-3) for n > 2. - Jonathan Sondow, Mar 14 2014
a(n) = the k-th difference of a(n+5k) - a(n+5k-1), k>=1. For example, a(10)=3 => a(15)-a(14) => 2nd difference of a(20)-a(19) => 3rd difference of a(25)-a(24)... - Bob Selcoe, Mar 18 2014
Construct the power matrix T(n,j) = [A^*j]*[S^*(j-1)] where A=(0,0,1,0,1,0,1,...) and S=(0,1,0,0,...) or A063524. [* is convolution operation] Define S^*0=I with I=(1,0,0,...). Then a(n) = Sum_{j=1...n} T(n,j). - David Neil McGrath, Dec 19 2014
If x=a(n), y=a(n+1), z=a(n+2), then x^3 + 2*y*x^2 - z^2*x - 3*y*z*x + y^2*x + y^3 - y^2*z + z^3 = 1. - Alexander Samokrutov, Jul 20 2015
For the sequence shifted by 6 terms, a(n) = Sum_{k=ceiling(n/3)..ceiling(n/2)} binomial(k+1,3*k-n) [Doslic-Zubac]. - N. J. A. Sloane, Apr 23 2017
From Joseph M. Shunia, Jan 21 2020: (Start)
a(2n) = 2*a(n-1)*a(n) + a(n)^2 + a(n+1)^2, for n > 8.
a(2n-1) = 2*a(n)*a(n+1) + a(n-1)^2, for n > 8.
a(2n+1) = 2*a(n+1)*a(n+2) + a(n)^2, for n > 7. (End)
0*a(0) + 1*a(1) + 2*a(2) + ... + n*a(n) = n*a(n+5) - a(n+9) + 2. - Greg Dresden and Zi Ye, Jul 02 2021
From Greg Dresden and Zi Ye, Jul 06 2021: (Start)
2*a(n) = a(n+2) + a(n-5) for n >= 5.
3*a(n) = a(n+4) - a(n-9) for n >= 9.
4*a(n) = a(n+5) - a(n-9) for n >= 9. (End)

Extensions

Edited by Charles R Greathouse IV, Mar 17 2010
Deleted certain dangerous or potentially dangerous links. - N. J. A. Sloane, Jan 30 2021

A001608 Perrin sequence (or Ondrej Such sequence): a(n) = a(n-2) + a(n-3) with a(0) = 3, a(1) = 0, a(2) = 2.

Original entry on oeis.org

3, 0, 2, 3, 2, 5, 5, 7, 10, 12, 17, 22, 29, 39, 51, 68, 90, 119, 158, 209, 277, 367, 486, 644, 853, 1130, 1497, 1983, 2627, 3480, 4610, 6107, 8090, 10717, 14197, 18807, 24914, 33004, 43721, 57918, 76725, 101639, 134643, 178364, 236282, 313007, 414646, 549289
Offset: 0

Views

Author

Keywords

Comments

Has been called the skiponacci sequence or skiponacci numbers. - N. J. A. Sloane, May 24 2013
For n >= 3, also the numbers of maximal independent vertex sets, maximal matchings, minimal edge covers, and minimal vertex covers in the n-cycle graph C_n. - Eric W. Weisstein, Mar 30 2017 and Aug 03 2017
With the terms indexed as shown, has property that p prime => p divides a(p). The smallest composite n such that n divides a(n) is 521^2. For quotients a(p)/p, where p is prime, see A014981.
Asymptotically, a(n) ~ r^n, with r=1.3247179572447... the inverse of the real root of 1-x^2-x^3=0 (see A060006). If n>9 then a(n)=round(r^n). - Ralf Stephan, Dec 13 2002
The recursion can be used to compute a(-n). The result is -A078712(n). - T. D. Noe, Oct 10 2006
For n>=3, a(n) is the number of maximal independent sets in a cycle of order n. - Vincent Vatter, Oct 24 2006
Pisano period lengths are given in A104217. - R. J. Mathar, Aug 10 2012
From Roman Witula, Feb 01 2013: (Start)
Let r1, r2 and r3 denote the roots of x^3 - x - 1. Then the following identity holds:
a(k*n) + (a(k))^n - (a(k) - r1^k)^n - (a(k) - r2^k)^n - (a(k) - r3^k)^n
= 0 for n = 0, 1, 2,
= 6 for n = 3,
= 12*a(k) for n = 4,
= 10*[2*(a(k))^2 - a(-k)] for n = 5,
= 30*a(k)*[(a(k))^2 - a(-k)] for n = 6,
= 7*[6*(a(k))^4 - 9*a(-k)*(a(k))^2 + 2*(a(-k))^2 - a(k)] for n = 7,
= 56*a(k)*[((a(k))^2 - a(-k))^2 - a(k)/2] for n = 8,
where a(-k) = -A078712(k) and the formula (5.40) from the paper of Witula and Slota is used. (End)
The parity sequence of a(n) is periodic with period 7 and has the form (1,0,0,1,0,1,1). Hence we get that a(n) and a(2*n) are congruent modulo 2. Similarly we deduce that a(n) and a(3*n) are congruent modulo 3. Is it true that a(n) and a(p*n) are congruent modulo p for every prime p? - Roman Witula, Feb 09 2013
The trinomial x^3 - x - 1 divides the polynomial x^(3*n) - a(n)*x^(2*n) + ((a(n)^2 - a(2*n))/2)*x^n - 1 for every n>=1. For example, for n=3 we obtain the factorization x^9 - 3*x^6 + 2*x^3 - 1 = (x^3 - x - 1)*(x^6 + x^4 - 2*x^3 + x^2 - x + 1). Sketch of the proof: Let p,s,t be roots of the Perrin polynomial x^3 - x - 1. Then we have (a(n))^2 = (p^n + s^n + t^n)^2 = a(2*n) + 2*a(n)*x^n -2*x^n + 2/x^n for every x = p,s,t, i.e., x^(3*n) - a(n)*x^(2*n) + ((a(n)^2 - a(2*n))/2)*x^n - 1 = 0 for every x = p,s,t, which finishes the proof. By discussion of the power(a(n))^3 = (p^n + s^n + t^n)^3 it can be deduced that the trinomial x^3 - x - 1 divides the polynomial 2*x^(4*n) - a(n)*x^(3*n) - a(2*n)*x^(2*n) + ((a(n)^3 - a(3*n) - 3)/3)*x^n - a(n) = 0. Co-author of these divisibility relations is also my young student Szymon Gorczyca (13 years old as of 2013). - Roman Witula, Feb 09 2013
The sum of powers of the real root and complex roots of x^3-x-1=0 as expressed as powers of the plastic number r, (see A060006). Let r0=1, r1=r, r2=1+r^(-1) and c0=2, c1=-r and c3 = r^(-5) then a(n) = r(n-2)+r(n-3) + c(n-2)+c(n-3). Example: a(5) = 1 + r^(-1) + 1 + r + 2 - r + r^(-5) = 4 + r^(-1) + r^(-5) = 5. - Richard Turk, Jul 14 2016
Also the number of minimal total dominating sets in the n-sun graph. - Eric W. Weisstein, Apr 27 2018
Named after the French engineer François Olivier Raoul Perrin (1841-1910). - Amiram Eldar, Jun 05 2021
a(p) = p*A127687(p) for p prime. - Robert FERREOL, Apr 09 2024

Examples

			From _Roman Witula_, Feb 01 2013: (Start)
We note that if a + b + c = 0 then:
1) a^3 + b^3 + c^3 = 3*a*b*c,
2) a^4 + b^4 + c^4 = 2*((a^2 + b^2 + c^2)/2)^2,
3) (a^5 + b^5 + c^5)/5 = (a^3 + b^3 + c^3)/3 * (a^2 +
    b^2  + c^2)/2,
4) (a^7 + b^7 + c^7)/7 = (a^5 + b^5 + c^5)/5 * (a^2 + b^2 + c^2)/2 = 2*(a^3 + b^3 + c^3)/3 * (a^4 + b^4 + c^4)/4,
5) (a^7 + b^7 + c^7)/7 * (a^3 + b^3 + c^3)/3 = ((a^5 + b^5 + c^5)/5)^2.
Hence, by the Binet formula for a(n) we obtain the relations: a(3) = 3, a(4) = 2*(a(2)/2)^2 = 2, a(5)/5 = a(3)/3 * a(2)/2, i.e., a(5) = 5, and similarly that a(7) = 7. (End)
		

References

  • Olivier Bordellès, Thèmes d'Arithmétique, Ellipses, 2006, Exercice 4.11, p. 127.0
  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.2.2.
  • Dmitry Fomin, On the properties of a certain recursive sequence, Mathematics and Informatics Quarterly, Vol. 3 (1993), pp. 50-53.
  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 70.
  • Manfred Schroeder, Number Theory in Science and Communication, 3rd ed., Springer, 1997.
  • A. G. Shannon, P. G. Anderson and A. F. Horadam, Properties of Cordonnier, Perrin and Van der Laan numbers, International Journal of Mathematical Education in Science and Technology, Volume 37:7 (2006), 825-831. See Q_n.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Closely related to A182097.
Cf. A000931, bisection A109377.
Cf. A013998 (Unrestricted Perrin pseudoprimes).
Cf. A018187 (Restricted Perrin pseudoprimes).

Programs

  • GAP
    a:=[3,0,2];; for n in [4..20] do a[n]:=a[n-2]+a[n-3]; od; a; # Muniru A Asiru, Jul 12 2018
    
  • Haskell
    a001608 n = a000931_list !! n
    a001608_list = 3 : 0 : 2 : zipWith (+) a001608_list (tail a001608_list)
    -- Reinhard Zumkeller, Feb 10 2011
    
  • Magma
    I:=[3,0,2]; [n le 3 select I[n] else Self(n-2) +Self(n-3): n in [1..50]]; // G. C. Greubel, Mar 18 2019
    
  • Maple
    A001608 :=proc(n) option remember; if n=0 then 3 elif n=1 then 0 elif n=2 then 2 else procname(n-2)+procname(n-3); fi; end proc;
    [seq(A001608(n),n=0..50)]; # N. J. A. Sloane, May 24 2013
  • Mathematica
    LinearRecurrence[{0, 1, 1}, {3, 0, 2}, 50] (* Harvey P. Dale, Jun 26 2011 *)
    per = Solve[x^3 - x - 1 == 0, x]; f[n_] := Floor @ Re[N[ per[[1, -1, -1]]^n + per[[2, -1, -1]]^n + per[[3, -1, -1]]^n]]; Array[f, 46, 0] (* Robert G. Wilson v, Jun 29 2010 *)
    a[n_] := n*Sum[Binomial[k, n-2*k]/k, {k, 1, n/2}]; a[0]=3; Table[a[n] , {n, 0, 45}] (* Jean-François Alcover, Oct 04 2012, after Vladimir Kruchinin *)
    CoefficientList[Series[(3 - x^2)/(1 - x^2 - x^3), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 03 2015 *)
    Table[RootSum[-1 - # + #^3 &, #^n &], {n, 0, 20}] (* Eric W. Weisstein, Mar 30 2017 *)
    RootSum[-1 - # + #^3 &, #^Range[0, 20] &] (* Eric W. Weisstein, Dec 30 2017 *)
  • PARI
    a(n)=if(n<0,0,polsym(x^3-x-1,n)[n+1])
    
  • PARI
    A001608_list(n) = polsym(x^3-x-1,n) \\ Joerg Arndt, Mar 10 2019
    
  • Python
    A001608_list, a, b, c = [3, 0, 2], 3, 0, 2
    for _ in range(100):
        a, b, c = b, c, a+b
        A001608_list.append(c) # Chai Wah Wu, Jan 27 2015
    
  • Sage
    ((3-x^2)/(1-x^2-x^3)).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, Mar 18 2019

Formula

G.f.: (3 - x^2)/(1 - x^2 - x^3). - Simon Plouffe in his 1992 dissertation
a(n) = r1^n + r2^n + r3^n where r1, r2, r3 are three roots of x^3-x-1=0.
a(n-1) + a(n) + a(n+1) = a(n+4), a(n) - a(n-1) = a(n-5). - Jon Perry, Jun 05 2003
From Gary W. Adamson, Feb 01 2004: (Start)
a(n) = trace(M^n) where M is the 3 X 3 matrix [0 1 0 / 0 0 1 / 1 1 0], the companion matrix of the characteristic polynomial of this sequence, P = X^3 - X - 1.
M^n * [3, 0, 2] = [a(n), a(n+1), a(n+2)]; e.g., M^7 * [3, 0, 2] = [7, 10, 12].
a(n) = 2*A000931(n+3) + A000931(n). (End)
a(n) = 3*p(n) - p(n-2) = 2*p(n) + p(n-3), with p(n) := A000931(n+3), n >= 0. - Wolfdieter Lang, Jun 21 2010
From Francesco Daddi, Aug 03 2011: (Start)
a(0) + a(1) + a(2) + ... + a(n) = a(n+5) - 2.
a(0) + a(2) + a(4) + ... + a(2*n) = a(2*n+3).
a(1) + a(3) + a(5) + ... + a(2*n+1) = a(2*n+4) - 2. (End)
From Francesco Daddi, Aug 04 2011: (Start)
a(0) + a(3) + a(6) + a(9) + ... + a(3*n) = a(3*n+2) + 1.
a(0) + a(5) + a(10) + a(15) + ... + a(5*n) = a(5*n+1)+3.
a(0) + a(7) + a(14) + a(21) + ... + a(7*n) = (a(7*n) + a(7*n+1) + 3)/2. (End)
a(n) = n*Sum_{k=1..floor(n/2)} binomial(k,n-2*k)/k, n > 0, a(0)=3. - Vladimir Kruchinin, Oct 21 2011
(a(n)^3)/2 + a(3n) - 3*a(n)*a(2n)/2 - 3 = 0. - Richard Turk, Apr 26 2017
2*a(4n) - 2*a(n) - 2*a(n)*a(3n) - a(2n)^2 + a(n)^2*a(2n) = 0. - Richard Turk, May 02 2017
a(n)^4 + 6*a(4n) - 4*a(3n)*a(n) - 3*a(2n)^2 - 12a(n) = 0. - Richard Turk, May 02 2017
a(n+5)^2 + a(n+1)^2 - a(n)^2 = a(2*(n+5)) + a(2*(n+1)) - a(2*n). - Aleksander Bosek, Mar 04 2019
From Aleksander Bosek, Mar 18 2019: (Start)
a(n+12) = a(n) + 2*a(n+4) + a(n+11);
a(n+16) = a(n) + 4*a(n+9) + a(n+13);
a(n+18) = a(n) + 2*a(n+6) + 5*a(n+12);
a(n+21) = a(n) + 2*a(n+12) + 6*a(n+14);
a(n+27) = a(n) + 3*a(n+9) + 4*a(n+22). (End)
a(n) = Sum_{j=0..floor((n-g)/(2*g))} 2*n/(n-2*(g-2)*j-(g-2)) * Hypergeometric2F1([-(n-2g*j-g)/2, -(2j+1)], [1], 1), g = 3 and n an odd integer. - Richard Turk, Oct 14 2019
E.g.f.: exp(r1*x) + exp(r2*x) + exp(r3*x), where r1, r2, r3 are three roots of x^3 - x - 1 = 0. - Fabian Pereyra, Nov 02 2024

Extensions

Additional comments from Mike Baker, Oct 11 2005
Definition edited by Chai Wah Wu, Jan 27 2015
Deleted certain dangerous or potentially dangerous links. - N. J. A. Sloane, Jan 30 2021

A003520 a(n) = a(n-1) + a(n-5); a(0) = ... = a(4) = 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 8, 11, 15, 20, 26, 34, 45, 60, 80, 106, 140, 185, 245, 325, 431, 571, 756, 1001, 1326, 1757, 2328, 3084, 4085, 5411, 7168, 9496, 12580, 16665, 22076, 29244, 38740, 51320, 67985, 90061, 119305, 158045, 209365, 277350, 367411, 486716, 644761
Offset: 0

Views

Author

Keywords

Comments

This comment covers a family of sequences which satisfy a recurrence of the form a(n) = a(n-1) + a(n-m), with a(n) = 1 for n = 0..m-1. The generating function is 1/(1-x-x^m). Also a(n) = Sum_{i=0..n/m} binomial(n-(m-1)*i, i). This family of binomial summations or recurrences gives the number of ways to cover (without overlapping) a linear lattice of n sites with molecules that are m sites wide. Special case: m=1: A000079; m=4: A003269; m=5: A003520; m=6: A005708; m=7: A005709; m=8: A005710.
Also counts ordered partitions such that no part is less than 5. For example, a(12) = a(11) + a(7) where a(7) counts 11,6+5 and 5+6 and a(11) counts 15,10+5, 9+6,8+7,7+8,6+9,5+10 and 5+5+5. Thus a(12) = 3 + 8 = 11. a(12) counts 16,11+5,10+6,9+7,8+8,7+9,6+10 and 6+5+5 but also 5+11,5+6+5 and 5+5+6. Similar results hold for the other sequences formed by a(n) = a(n-1) + a(n-k). - Alford Arnold, Aug 06 2003
Number of compositions of n into parts 1 and 5. - Joerg Arndt, Jun 25 2011
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=5, 2*a(n-5) equals the number of 2-colored compositions of n with all parts >= 5, such that no adjacent parts have the same color. - Milan Janjic, Nov 27 2011
a(n+4) equals the number of binary words of length n having at least 4 zeros between every two successive ones. - Milan Janjic, Feb 07 2015
Number of tilings of a 5 X n rectangle with 5 X 1 pentominoes. - M. Poyraz Torcuk, Mar 26 2022

References

  • A. Brousseau, Fibonacci and Related Number Theoretic Tables. Fibonacci Association, San Jose, CA, 1972, p. 119.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Apart from initial terms, same as A017899.

Programs

  • Maple
    a[0]:=1:a[1]:=1:a[2]:=1:a[3]:=1:a[4]:=1:for n from 5 to 60 do a[n]:=a[n-1]+a[n-5] od:seq(a[n],n=0..60);
    with(combstruct): SeqSetU := [S, {S=Sequence(U), U=Set(Z, card > 4)}, unlabeled]: seq(count(SeqSetU, size=j), j=5..55); # Zerinvary Lajos, Oct 10 2006
    A003520:=-1/(z**3+z**2-1)/(z**2-z+1); # Simon Plouffe in his 1992 dissertation
    ZL:=[S, {a = Atom, b = Atom, S = Prod(X,Sequence(Prod(X,b))), X = Sequence(b,card >= 4)}, unlabelled]: seq(combstruct[count](ZL, size=n), n=4..54); # Zerinvary Lajos, Mar 26 2008
    M := Matrix(5, (i,j)-> if j=1 then [1, 0, 0, 0, 1][i] elif (i=j-1) then 1 else 0 fi); a:= n-> (M^(n))[1,1]: seq(a(n), n=0..50); # Alois P. Heinz, Jul 27 2008
  • Mathematica
    a[0] = a[1] = a[2] = a[3] = a[4] = 1; a[n_] := a[n] = a[n - 1] + a[n - 5]; Table[ a[n], {n, 0, 49}] (* Robert G. Wilson v, Dec 09 2004 *)
    CoefficientList[Series[1/(1 - x - x^5), {x, 0, 51}], x] (* Zerinvary Lajos, Mar 29 2007 *)
    LinearRecurrence[{1, 0, 0, 0, 1}, {1, 1, 1, 1, 1}, 80] (* Vladimir Joseph Stephan Orlovsky, Feb 16 2012 *)
    nxt[{a_,b_,c_,d_,e_}]:={b,c,d,e,e+a}; NestList[nxt,{1,1,1,1,1},50][[;;,1]] (* Harvey P. Dale, Sep 27 2023 *)
  • Maxima
    a(n):=sum(binomial(n-1+(-4)*j,j),j,0,(n-1)/4); /* Vladimir Kruchinin, May 23 2011 */
    
  • PARI
    my(x='x+O('x^66)); Vec(x/(1-(x+x^5))) /* Joerg Arndt, Jun 25 2011 */

Formula

G.f.: 1/(1-x-x^5) = 1/((1-x+x^2)(1-x^2-x^3)).
a(n) = Sum_{j=0..(n-1)/4} binomial(n-1+(-4)*j,j).
For n>5, a(n) = floor( d*c^n + 1/2) where c is the positive real root of x^5-x^4-1 and d is the positive real root of 161*x^3-23*x^2-12*x-1 ( c=1.32471795724474602... and d=0.3811571478326847...) - Benoit Cloitre, Nov 30 2002
a(n) = term (1,1) in the 5 X 5 matrix [1,1,0,0,0; 0,0,1,0,0; 0,0,0,1,0; 0,0,0,0,1; 1,0,0,0,0]^n. - Alois P. Heinz, Jul 27 2008
For positive integers n and k such that k <= n <= 5*k, and 4 divides n-k, define c(n,k) = binomial(k,(n-k)/4), and c(n,k)=0, otherwise. Then, for n >= 1, a(n) = sum(c(n,k), k=1..n). - Milan Janjic, Dec 09 2011
Apparently a(n) = hypergeometric([-1/5*n, 1/5-1/5*n, 2/5-1/5*n, 3/5-1/5*n, 4/5-1/5*n], [-1/4*n, 1/4-1/4*n, 1/2-1/4*n, 3/4-1/4*n], -5^5/4^4) for n>=16. - Peter Luschny, Sep 18 2014
7*a(n) = A117373(n+4) +5*b(n) +4*b(n-1) +b(n-2) where b(n) = A182097(n). - R. J. Mathar, Aug 07 2017

Extensions

Additional comments from Yong Kong (ykong(AT)curagen.com), Dec 16 2000

A096231 Number of n-th generation triangles in the tiling of the hyperbolic plane by triangles with angles {Pi/2, Pi/3, 0}.

Original entry on oeis.org

1, 3, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, 200, 265, 351, 465, 616, 816, 1081, 1432, 1897, 2513, 3329, 4410, 5842, 7739, 10252, 13581, 17991, 23833, 31572, 41824, 55405, 73396, 97229, 128801, 170625, 226030, 299426, 396655, 525456, 696081
Offset: 0

Views

Author

Bellovin, Kennedy, Stansifer, Wong (chrkenn(AT)bergen.org), Jul 29 2004

Keywords

Comments

Or, coordination sequence for (2,3,infinity) tiling of hyperbolic plane. - N. J. A. Sloane, Dec 29 2015
The generation of a triangle is defined such that exactly one triangle has generation 0 and a triangle has generation n, n > 0, if it is next to a triangle with generation n-1 but not to one with lower generation.
The recursions were found by examining empirical data and have not been proved to be accurate for all n. The generating function was found by assuming that the recursions were accurate; it can be calculated from either recursion. We created a specialized program in Java for finding the sequences of generations for triangles with angles {Pi/p, Pi/q, Pi/r}, p, q, r > 1, that tile the Euclidean or hyperbolic plane; this program was used to calculate the sequence.
The g.f. (1+X)^2 * (1+X+X^2) / (1-X^2-X^3) follows from the Cannon-Wagreich paper, Prop. 3.1, so the g.f. and the recurrence are now a theorem, no longer conjectures, and the additional terms and the Mma program are now justified. - N. J. A. Sloane, Dec 29 2015

Examples

			a(1)=3 because exactly three triangles have generation 1, i.e., are adjacent to the triangle with generation 0.
		

Crossrefs

The following are basically all variants of the same sequence: A000931, A078027, A096231, A124745, A133034, A134816, A164001, A182097, A228361 and probably A020720. However, each one has its own special features and deserves its own entry.
Equals A000931(n+10).

Programs

  • Magma
    I:=[1,3,5,7,9,12,16]; [n le 7 select I[n] else Self(n-1)+Self(n-5): n in [1..50]]; // Vincenzo Librandi, Dec 30 2015
    
  • Maple
    f:= gfun:-rectoproc({a(n) = a(n-2)+a(n-3),
    a(0)=1, a(1)=3, a(2)=5, a(3)=7, a(4)=9, a(5)=12}, a(n), remember):
    seq(f(n),n=0..50); # Robert Israel, Jan 13 2016
  • Mathematica
    CoefficientList[ Series[(x + 1)^2*(1 + x + x^2)/(1 - x^2 - x^3), {x, 0, 45}], x] (* Robert G. Wilson v, Jul 31 2004 *)
    Join[{1, 3, 5}, LinearRecurrence[{0, 1, 1}, {7, 9, 12}, 50]] (* Vincenzo Librandi, Dec 30 2015 *)
  • PARI
    a(n)=if(n>2,([0,1,0; 0,0,1; 1,1,0]^n*[1;3;5])[1,1],1) \\ Charles R Greathouse IV, Feb 09 2017

Formula

a(n) = a(n-1) + a(n-5) = a(n-2) + a(n-3), for n > 6.
G.f.: (x+1)^2*(1+x+x^2) / (1-x^2-x^3).

Extensions

More terms from Robert G. Wilson v, Jul 31 2004

A134816 Padovan's spiral numbers.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, 200, 265, 351, 465, 616, 816, 1081, 1432, 1897, 2513, 3329, 4410, 5842, 7739, 10252, 13581, 17991, 23833, 31572, 41824, 55405, 73396, 97229, 128801, 170625, 226030, 299426, 396655
Offset: 1

Views

Author

Omar E. Pol, Nov 13 2007

Keywords

Comments

a(n) is the length of the edge of the n-th equilateral triangle in the Padovan triangle spiral.
Partial sums of A000931. - Juri-Stepan Gerasimov, Jul 17 2009
Rising diagonal sums of triangle A152198. - John Molokach, Jul 09 2013
a(n) is the number of pairs of rabbits living at month n with the following rules: a pair of rabbits born in month n begins to procreate in month n + 2, procreates again in month n + 3, and dies at the end of this month (each pair therefore gives birth to 2 pairs); the first pair is born in month 1. - Robert FERREOL, Oct 16 2017

Examples

			a(6)=3 because 6+4=10 and A000931(10)=3.
G.f. = x + x^2 + x^3 + 2*x^4 + 2*x^5 + 3*x^6 + 4*x^7 + 5*x^8 + 7*x^9 + ... - _Michael Somos_, Jan 01 2019
		

Crossrefs

The following are basically all variants of the same sequence: A000931, A078027, A096231, A124745, A133034, A134816, A164001, A182097, A228361 and probably A020720. However, each one has its own special features and deserves its own entry.
Cf. A060006.

Programs

  • GAP
    a:=[1,1,1];; for n in [4..50] do a[n]:=a[n-2]+a[n-3]; od; a; # Muniru A Asiru, Aug 12 2018
    
  • Maple
    a:=proc(n, p, q) option remember:
    if n<=p then 1
    elif n<=q then a(n-1, p, q)+a(n-p, p, q)
    else add(a(n-k, p, q), k=p..q) fi end:
    seq(a(n, 2, 3), n=0..100); # Robert FERREOL, Oct 16 2017
  • Mathematica
    Drop[ CoefficientList[ Series[(1 - x^2)/(1 - x^2 - x^3), {x, 0, 52}], x], 5] (* Robert G. Wilson v, Sep 30 2009 *)
    a[n_]=Round[Root[23#^3-5#-1&,1]Root[#^3-#-1&,1]^n ];a[Range[100]] (* OR *)
    LinearRecurrence[{0, 1, 1}, {1, 1, 1}, 100] (* Federico Provvedi, Feb 12 2025 *)
  • PARI
    {a(n) = if( n>=0, polcoeff( (x + x^2) / (1 - x^2 - x^3) + x * O(x^n), n), polcoeff( (x + x^2) / (1 + x - x^3) + x * O(x^-n), -n))}; /* Michael Somos, Jan 01 2019 */
    
  • PARI
    my(x='x+O('x^50)); Vec(x*(1+x)/(1-x^2-x^3)) \\ Joerg Arndt, Feb 07 2025

Formula

a(n) = A000931(n+4).
G.f.: x * (1 + x) / (1 - x^2 - x^3) = x / (1 - x / (1 - x^2 / (1 + x / (1 - x / (1 + x))))). - Michael Somos, Jan 03 2013
a(1)=a(2)=a(3)=1, a(n) = a(n-2) + a(n-3) for n > 3. - Robert FERREOL, Oct 16 2017
a(n) = round(x*rho^n), where the Silver constant rho = Limit_{n->oo} a(n+1)/a(n) = A060006, and x is the real solution of the cubic 23*x^3-5*x-1 = 0. - Federico Provvedi, Feb 12 2025

Extensions

More terms from Robert G. Wilson v, Sep 30 2009
First comment clarified by Omar E. Pol, Aug 12 2018

A034943 Binomial transform of Padovan sequence A000931.

Original entry on oeis.org

1, 1, 1, 2, 5, 12, 28, 65, 151, 351, 816, 1897, 4410, 10252, 23833, 55405, 128801, 299426, 696081, 1618192, 3761840, 8745217, 20330163, 47261895, 109870576, 255418101, 593775046, 1380359512, 3208946545
Offset: 0

Views

Author

Keywords

Comments

Trisection of the Padovan sequence: a(n) = A000931(3n). - Paul Barry, Jul 06 2004
a(n+1) gives diagonal sums of Riordan array (1/(1-x),x/(1-x)^3). - Paul Barry, Oct 11 2005
a(n+2) is the sum, over all Boolean n-strings, of the product of the lengths of the runs of 1. For example, the Boolean 7-string (0,1,1,0,1,1,1) has two runs of 1s. Their lengths, 2 and 3, contribute a product of 6 to a(9). The 8 Boolean 3-strings contribute to a(5) as follows: 000 (empty product), 001, 010, 100, 101 all contribute 1, 011 and 110 contribute 2, 111 contributes 3. - David Callan, Nov 29 2007
[a(n), a(n+1), a(n+2)], n > 0, = [0,1,0; 0,0,1; 1,-2,3]^n * [1,1,1]. - Gary W. Adamson, Mar 27 2008
Without the initial 1 and 1: 1, 2, 5, 12, 28, this is also the transform of 1 by the T_{1,0} transformation; see Choulet link. - Richard Choulet, Apr 11 2009
Without the first 1: transform of 1 by T_{0,0} transformation (see Choulet link). - Richard Choulet, Apr 11 2009
Starting (1, 2, 5, 12, ...) = INVERT transform of (1, 1, 2, 3, 4, 5, ...) and row sums of triangle A159974. - Gary W. Adamson, Apr 28 2009
a(n+1) is also the number of 321-avoiding separable permutations. (A permutation is separable if it avoids both 2413 and 3142.) - Vince Vatter, Sep 21 2009
a(n+1) is an eigensequence of the sequence array for (1,1,2,3,4,5,...). - Paul Barry, Nov 03 2010
Equals the INVERTi transform of A055588: (1, 2, 4, 9, 22, 56, ...) - Gary W. Adamson, Apr 01 2011
The Ca3 sums, see A180662, of triangle A194005 equal the terms of this sequence without a(0) and a(1). - Johannes W. Meijer, Aug 16 2011
Without the initial 1, a(n) = row sums of A182097(n)*A007318(n,k); i.e., a Triangular array T(n,k) multiplying the binomial (Pascal's) triangle by the Padovan sequence where a(0) = 1, a(1) = 0 and a(2) = 1. - Bob Selcoe, Jun 28 2013
a(n+1) is the top left entry of the n-th power of any of the 3 X 3 matrices [1, 1, 1; 0, 1, 1; 1, 0, 1] or [1, 1, 0; 1, 1, 1; 1, 0, 1] or [1, 1, 1; 1, 1, 0; 0, 1, 1] or [1, 0, 1; 1, 1, 0; 1, 1, 1]. - R. J. Mathar, Feb 03 2014
a(n) is the top left entry of the n-th power of the 3 X 3 matrix [1, 0, 1; 1, 1, 1; 0, 1, 1] or of the 3 X 3 matrix [1, 1, 0; 0, 1, 1; 1, 1, 1]. - R. J. Mathar, Feb 03 2014
Number of sequences (e(1), ..., e(n-1)), 0 <= e(i) < i, such that there is no triple i < j < k with e(i) != e(j) < e(k) and e(i) <= e(k). [Martinez and Savage, 2.8] - Eric M. Schmidt, Jul 17 2017
a(n+1) is the number of words of length n over the alphabet {0,1,2} that do not contain the substrings 01 or 12 and do not start with a 2 and do not end with a 0. - Yiseth K. Rodríguez C., Sep 11 2020

Examples

			G.f. = 1 + x + x^2 + 2*x^3 + 5*x^4 + 12*x^5 + 28*x^6 + 65*x^7 + 151*x^8 + ...
		

Crossrefs

Programs

  • Magma
    [n le 3 select 1 else 3*Self(n-1)-2*Self(n-2)+Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 14 2012
    
  • Maple
    A034943 := proc(n): add(binomial(n+k-1, 3*k), k=0..floor(n/2)) end: seq(A034943(n), n=0..28); # Johannes W. Meijer, Aug 16 2011
  • Mathematica
    LinearRecurrence[{3,-2,1},{1,1,1},30] (* Harvey P. Dale, Aug 11 2017 *)
  • PARI
    {a(n) = if( n<1, n = 0-n; polcoeff( (1 - x + x^2) / (1 - 2*x + 3*x^2 - x^3) + x * O(x^n), n), n = n-1; polcoeff( (1 - x + x^2) / (1 - 3*x + 2*x^2 - x^3) + x * O(x^n), n))} /* Michael Somos, Mar 31 2012 */
    
  • SageMath
    @CachedFunction
    def a(n): # a = A034943
        if (n<3): return 1
        else: return 3*a(n-1) - 2*a(n-2) + a(n-3)
    [a(n) for n in range(51)] # G. C. Greubel, Apr 22 2023

Formula

a(n) = 3*a(n-1) - 2*a(n-2) + a(n-3).
a(n) = Sum_{k=0..floor(n/2)} binomial(n+k-1, 3*k). - Paul Barry, Jul 06 2004
G.f.: (1 - 2*x)/(1 - 3*x + 2*x^2 - x^3). - Paul Barry, Jul 06 2005
G.f.: 1 + x / (1 - x / (1 - x / (1 - x / (1 + x / (1 - x))))). - Michael Somos, Mar 31 2012
a(-1 - n) = A185963(n). - Michael Somos, Mar 31 2012
a(n) = A095263(n) - 2*A095263(n-1). - G. C. Greubel, Apr 22 2023

Extensions

Edited by Charles R Greathouse IV, Apr 20 2010

A164001 Spiral of triangles around a hexagon.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, 200, 265, 351, 465, 616, 816, 1081, 1432, 1897, 2513, 3329, 4410, 5842, 7739, 10252, 13581, 17991, 23833, 31572, 41824, 55405, 73396, 97229, 128801, 170625, 226030, 299426
Offset: 1

Views

Author

Omar E. Pol, Oct 27 2009

Keywords

Comments

a(n) is the side length of the n-th triangle in a spiral around a hexagon with side length = 1.
Sequence very similar to A134816, but without repeated terms. Records in A134816. Also records in A000931, the Padovan sequence.
Column k=2 of A242464 (with offset 0). - Alois P. Heinz, May 19 2014
a(n) is the number of bitstrings of length n-1 without two consecutive 0's or three consecutive 1's. - Zachary Stier, Mar 16 2021

Crossrefs

The following are basically all variants of the same sequence: A000931, A078027, A096231, A124745, A133034, A134816, A164001, A182097, A228361 and probably A020720. However, each one has its own special features and deserves its own entry.
Cf. A060006.

Programs

  • Mathematica
    LinearRecurrence[{0,1,1},{1,2,3,4},50] (* Harvey P. Dale, Jul 08 2017 *)

Formula

If n < 5 then a(n) = n, otherwise a(n) = a(n-2) + a(n-3).
G.f.: -x - 1 + (-x^2 - 2*x - 1)/(-1 + x^2 + x^3). a(n) = A000931(n+4) + A000931(n+5) = A000931(n+7), n > 1. - R. J. Mathar, Oct 29 2009
a(n) ~ 1.67873... * 1.32471...^(n-1) where 1.32471... is the real root of x^3 - x - 1 = 0 (see A060006), and 1.67873... is the real root of 23*x^3 - 46*x^2 + 13*x - 1 = 0. - Ricardo Bittencourt, May 14 2023

A364457 Number A(n,k) of tilings of a k X n rectangle using dominoes and trominoes (of any shape); square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 6, 6, 1, 1, 1, 2, 17, 30, 17, 2, 1, 1, 2, 43, 145, 145, 43, 2, 1, 1, 3, 108, 733, 1352, 733, 108, 3, 1, 1, 4, 280, 3540, 12688, 12688, 3540, 280, 4, 1, 1, 5, 727, 17300, 115958, 226922, 115958, 17300, 727, 5, 1
Offset: 0

Views

Author

Alois P. Heinz, Jul 25 2023

Keywords

Examples

			A(3,2) = A(2,3) = 6:
  .___.   .___.   .___.   .___.   .___.   .___.
  | | |   |___|   | | |   |___|   | ._|   |_. |
  | | |   |___|   |_|_|   | | |   |_| |   | |_|
  |_|_|   |___|   |___|   |_|_|   |___|   |___|  .
.
Square array A(n,k) begins:
  1, 1,   1,     1,       1,        1,          1,            1, ...
  1, 0,   1,     1,       1,        2,          2,            3, ...
  1, 1,   2,     6,      17,       43,        108,          280, ...
  1, 1,   6,    30,     145,      733,       3540,        17300, ...
  1, 1,  17,   145,    1352,    12688,     115958,      1075397, ...
  1, 2,  43,   733,   12688,   226922,    3927233,     68846551, ...
  1, 2, 108,  3540,  115958,  3927233,  128441094,   4263997124, ...
  1, 3, 280, 17300, 1075397, 68846551, 4263997124, 267855152858, ...
		

Crossrefs

Columns (or rows) k=0-10 give: A000012, A182097(n) = A000931(n+3), A019439, A364460, A364155, A364556, A364616, A364617, A364632, A364638, A364640.
Main diagonal gives A364504.

Formula

A(n,k) = A(k,n).

Extensions

Terms n,k>=4 had to be corrected as was pointed out by Martin Fuller and David Radcliffe - Alois P. Heinz, Apr 05 2025

A078027 Expansion of (1 - x)/(1 - x^2 - x^3).

Original entry on oeis.org

1, -1, 1, 0, 0, 1, 0, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, 200, 265, 351, 465, 616, 816, 1081, 1432, 1897, 2513, 3329, 4410, 5842, 7739, 10252, 13581, 17991, 23833, 31572, 41824, 55405, 73396, 97229, 128801, 170625, 226030, 299426
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Crossrefs

The following are basically all variants of the same sequence: A000931, A078027, A096231, A124745, A133034, A134816, A164001, A182097, A228361 and probably A020720. However, each one has its own special features and deserves its own entry.

Programs

  • GAP
    a:=[1,-1,1];; for n in [4..60] do a[n]:=a[n-2]+a[n-3]; od; a; # G. C. Greubel, Aug 04 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 60); Coefficients(R!( (1-x)/(1-x^2-x^3) )); // G. C. Greubel, Aug 04 2019
    
  • Maple
    seq(coeff(series((1-x)/(1-x^2-x^3), x, n+1), x, n), n = 0..60); # G. C. Greubel, Aug 04 2019
  • Mathematica
    CoefficientList[Series[(1-x)/(1-x^2-x^3), {x,0,60}], x] (* G. C. Greubel, Aug 04 2019 *)
    LinearRecurrence[{0,1,1},{1,-1,1},60] (* Harvey P. Dale, Jun 20 2020 *)
  • PARI
    Vec((1-x)/(1-x^2-x^3)+O(x^60)) \\ Charles R Greathouse IV, Sep 23 2012
    
  • Sage
    ((1-x)/(1-x^2-x^3)).series(x, 60).coefficients(x, sparse=False) # G. C. Greubel, Aug 04 2019
    

Formula

a(n) is asymptotic to r^(n-2) / (2*r+3) where r = 1.3247179572447..., the real root of x^3 = x + 1. For n >= 4, a(n) = a(n-2) + a(n-3). - Philippe Deléham, Jan 13 2004
a(n) = A182097(n) - A182097(n-1). - R. J. Mathar, Jan 27 2018

A124745 Expansion of (1+x)/(1-x^2+x^3).

Original entry on oeis.org

1, 1, 1, 0, 0, -1, 0, -1, 1, -1, 2, -2, 3, -4, 5, -7, 9, -12, 16, -21, 28, -37, 49, -65, 86, -114, 151, -200, 265, -351, 465, -616, 816, -1081, 1432, -1897, 2513, -3329, 4410, -5842, 7739, -10252, 13581, -17991, 23833, -31572, 41824, -55405, 73396, -97229, 128801
Offset: 0

Views

Author

Paul Barry, Nov 06 2006

Keywords

Crossrefs

Row sums of A124744.
The following are basically all variants of the same sequence: A000931, A078027, A096231, A124745, A133034, A134816, A164001, A182097, A228361 and probably A020720. However, each one has its own special features and deserves its own entry.

Programs

  • Mathematica
    LinearRecurrence[{0, 1, -1}, {1, 1, 1}, 100] (* Paolo Xausa, Aug 27 2024 *)

Formula

a(n) = Sum_{k=0..n} C(floor(k/2),n-k)*(-1)^(n-k) = (-1)^n*A078027(n).
a(n) = a(n-2) - a(n-3) with a(0) = a(1) = a(2) = 1. - Taras Goy, Mar 24 2019
Showing 1-10 of 29 results. Next