cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 55 results. Next

A000204 Lucas numbers (beginning with 1): L(n) = L(n-1) + L(n-2) with L(1) = 1, L(2) = 3.

Original entry on oeis.org

1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, 2207, 3571, 5778, 9349, 15127, 24476, 39603, 64079, 103682, 167761, 271443, 439204, 710647, 1149851, 1860498, 3010349, 4870847, 7881196, 12752043, 20633239, 33385282, 54018521, 87403803, 141422324
Offset: 1

Views

Author

Keywords

Comments

See A000032 for the version beginning 2, 1, 3, 4, 7, ...
Also called Schoute's accessory series (see Jean, 1984). - N. J. A. Sloane, Jun 08 2011
L(n) is the number of matchings in a cycle on n vertices: L(4)=7 because the matchings in a square with edges a, b, c, d (labeled consecutively) are the empty set, a, b, c, d, ac and bd. - Emeric Deutsch, Jun 18 2001
This comment covers a family of sequences which satisfy a recurrence of the form a(n) = a(n-1) + a(n-m), with a(n) = 1 for n = 1..m - 1, a(m) = m + 1. The generating function is (x + m*x^m)/(1 - x - x^m). Also a(n) = 1 + n*Sum_{i=1..n/m} binomial(n - 1 - (m - 1)*i, i - 1)/i. This gives the number of ways to cover (without overlapping) a ring lattice (or necklace) of n sites with molecules that are m sites wide. Special cases: m = 2: A000204, m = 3: A001609, m = 4: A014097, m = 5: A058368, m = 6: A058367, m = 7: A058366, m = 8: A058365, m = 9: A058364.
L(n) is the number of points of period n in the golden mean shift. The number of orbits of length n in the golden mean shift is given by the n-th term of the sequence A006206. - Thomas Ward, Mar 13 2001
Row sums of A029635 are 1, 1, 3, 4, 7, ... - Paul Barry, Jan 30 2005
a(n) counts circular n-bit strings with no repeated 1's. E.g., for a(5): 00000 00001 00010 00100 00101 01000 01001 01010 10000 10010 10100. Note #{0...} = fib(n+1), #{1...} = fib(n-1), #{000..., 001..., 100...} = a(n-1), #{010..., 101...} = a(n-2). - Len Smiley, Oct 14 2001
Row sums of the triangle in A182579. - Reinhard Zumkeller, May 07 2012
If p is prime then L(p) == 1 (mod p). L(2^k) == -1 (mod 2^(k+1)) for k = 0,1,2,... - Thomas Ordowski, Sep 25 2013
Satisfies Benford's law [Brown-Duncan, 1970; Berger-Hill, 2017]. - N. J. A. Sloane, Feb 08 2017

Examples

			G.f. = x + 3*x^2 + 4*x^3 + 7*x^4 + 11*x^5 + 18*x^6 + 29*x^7 + 47*x^8 + ...
		

References

  • P. Bachmann, Niedere Zahlentheorie (1902, 1910), reprinted Chelsea, NY, 1968, vol. 2, p. 69.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 46.
  • Leonhard Euler, Introductio in analysin infinitorum (1748), sections 216 and 229.
  • G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 148.
  • Silvia Heubach and Toufik Mansour, Combinatorics of Compositions and Words, CRC Press, 2010.
  • V. E. Hoggatt, Jr., Fibonacci and Lucas Numbers. Houghton, Boston, MA, 1969.
  • R. V. Jean, Mathematical Approach to Pattern and Form in Plant Growth, Wiley, 1984. See p. 5. - N. J. A. Sloane, Jun 08 2011
  • Thomas Koshy, "Fibonacci and Lucas Numbers with Applications", John Wiley and Sons, 2001.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • S. Vajda, Fibonacci and Lucas numbers and the Golden Section, Ellis Horwood Ltd., Chichester, 1989.

Crossrefs

Programs

  • Haskell
    a000204 n = a000204_list !! n
    a000204_list = 1 : 3 : zipWith (+) a000204_list (tail a000204_list)
    -- Reinhard Zumkeller, Dec 18 2011
    
  • Magma
    [Lucas(n): n in [1..30]]; // G. C. Greubel, Dec 17 2017
    
  • Maple
    A000204 := proc(n) option remember; if n <=2 then 2*n-1; else procname(n-1)+procname(n-2); fi; end;
    with(combinat): A000204 := n->fibonacci(n+1)+fibonacci(n-1);
    # alternative Maple program:
    L:= n-> (<<1|1>, <1|0>>^n. <<2, -1>>)[1, 1]:
    seq(L(n), n=1..50);  # Alois P. Heinz, Jul 25 2008
    # Alternative:
    a := n -> `if`(n=1, 1, `if`(n=2, 3, hypergeom([(1-n)/2, -n/2], [1-n], -4))):
    seq(simplify(a(n)), n=1..39); # Peter Luschny, Sep 03 2019
  • Mathematica
    c = (1 + Sqrt[5])/2; Table[Expand[c^n + (1 - c)^n], {n, 30}] (* Artur Jasinski, Oct 05 2008 *)
    Table[LucasL[n, 1], {n, 36}] (* Zerinvary Lajos, Jul 09 2009 *)
    LinearRecurrence[{1, 1},{1, 3}, 50] (* Sture Sjöstedt, Nov 28 2011 *)
    lukeNum[n_] := If[n < 1, 0, LucasL[n]]; (* Michael Somos, May 18 2015 *)
    lukeNum[n_] := SeriesCoefficient[x D[Log[1 / (1 - x - x^2)], x], {x, 0, n}]; (* Michael Somos, May 18 2015 *)
  • PARI
    A000204(n)=fibonacci(n+1)+fibonacci(n-1) \\ Michael B. Porter, Nov 05 2009
    
  • Python
    from functools import cache
    @cache
    def a(n): return [1, 3][n-1] if n < 3 else a(n-1) + a(n-2)
    print([a(n) for n in range(1, 41)]) # Michael S. Branicky, Nov 13 2022
    
  • Python
    [(i:=-1)+(j:=2)] + [(j:=i+j)+(i:=j-i) for  in range(100)] # _Jwalin Bhatt, Apr 02 2025
  • Sage
    def A000204():
        x, y = 1, 2
        while true:
           yield x
           x, y = x + y, x
    a = A000204(); print([next(a) for i in range(39)])  # Peter Luschny, Dec 17 2015
    
  • Scala
    def lucas(n: BigInt): BigInt = {
      val zero = BigInt(0)
      def fibTail(n: BigInt, a: BigInt, b: BigInt): BigInt = n match {
        case `zero` => a
        case _ => fibTail(n - 1, b, a + b)
      }
      fibTail(n, 2, 1)
    }
    (1 to 50).map(lucas()) // _Alonso del Arte, Oct 20 2019
    

Formula

Expansion of x(1 + 2x)/(1 - x - x^2). - Simon Plouffe, dissertation 1992; multiplied by x. - R. J. Mathar, Nov 14 2007
a(n) = A000045(2n)/A000045(n). - Benoit Cloitre, Jan 05 2003
For n > 1, L(n) = F(n + 2) - F(n - 2), where F(n) is the n-th Fibonacci number (A000045). - Gerald McGarvey, Jul 10 2004
a(n+1) = 4*A054886(n+3) - A022388(n) - 2*A022120(n+1) (a conjecture; note that the above sequences have different offsets). - Creighton Dement, Nov 27 2004
a(n) = Sum_{k=0..floor((n+1)/2)} (n+1)*binomial(n - k + 1, k)/(n - k + 1). - Paul Barry, Jan 30 2005
L(n) = A000045(n+3) - 2*A000045(n). - Creighton Dement, Oct 07 2005
L(n) = A000045(n+1) + A000045(n-1). - John Blythe Dobson, Sep 29 2007
a(n) = 2*Fibonacci(n-1) + Fibonacci(n), n >= 1. - Zerinvary Lajos, Oct 05 2007
L(n) is the term (1, 1) in the 1 X 2 matrix [2, -1].[1, 1; 1, 0]^n. - Alois P. Heinz, Jul 25 2008
a(n) = phi^n + (1 - phi)^n = phi^n + (-phi)^(-n) = ((1 + sqrt(5))^n + (1 - sqrt(5))^n)/(2^n) where phi is the golden ratio (A001622). - Artur Jasinski, Oct 05 2008
a(n) = A014217(n+1) - A014217(n-1). See A153263. - Paul Curtz, Dec 22 2008
a(n) = ((1 + sqrt(5))^n - (1 - sqrt(5))^n)/(2^n*sqrt(5)) + ((1 + sqrt(5))^(n - 1) - (1 - sqrt(5))^(n - 1))/(2^(n - 2)*sqrt(5)). - Al Hakanson (hawkuu(AT)gmail.com), Jan 12 2009, Jan 14 2009
From Hieronymus Fischer, Oct 20 2010 (Start)
Continued fraction for n odd: [L(n); L(n), L(n), ...] = L(n) + fract(Fib(n) * phi).
Continued fraction for n even: [L(n); -L(n), L(n), -L(n), L(n), ...] = L(n) - 1 + fract(Fib(n)*phi). Also: [L(n) - 2; 1, L(n) - 2, 1, L(n) - 2, ...] = L(n) - 2 + fract(Fib(n)*phi). (End)
INVERT transform of (1, 2, -1, -2, 1, 2, ...). - Gary W. Adamson, Mar 07 2012
L(2n - 1) = floor(phi^(2n - 1)); L(2n) = ceiling(phi^(2n)). - Thomas Ordowski, Jun 15 2012
a(n) = hypergeom([(1 - n)/2, -n/2], [1 - n], -4) for n >= 3. - Peter Luschny, Sep 03 2019
E.g.f.: 2*(exp(x/2)*cosh(sqrt(5)*x/2) - 1). - Stefano Spezia, Jul 26 2022

Extensions

Additional comments from Yong Kong (ykong(AT)curagen.com), Dec 16 2000
Plouffe Maple line edited by N. J. A. Sloane, May 13 2008

A000930 Narayana's cows sequence: a(0) = a(1) = a(2) = 1; thereafter a(n) = a(n-1) + a(n-3).

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 6, 9, 13, 19, 28, 41, 60, 88, 129, 189, 277, 406, 595, 872, 1278, 1873, 2745, 4023, 5896, 8641, 12664, 18560, 27201, 39865, 58425, 85626, 125491, 183916, 269542, 395033, 578949, 848491, 1243524, 1822473, 2670964, 3914488, 5736961, 8407925
Offset: 0

Views

Author

Keywords

Comments

Named after a 14th-century Indian mathematician. [The sequence first appeared in the book "Ganita Kaumudi" (1356) by the Indian mathematician Narayana Pandita (c. 1340 - c. 1400). - Amiram Eldar, Apr 15 2021]
Number of compositions of n into parts 1 and 3. - Joerg Arndt, Jun 25 2011
A Lamé sequence of higher order.
Could have begun 1,0,0,1,1,1,2,3,4,6,9,... (A078012) but that would spoil many nice properties.
Number of tilings of a 3 X n rectangle with straight trominoes.
Number of ways to arrange n-1 tatami mats in a 2 X (n-1) room such that no 4 meet at a point. For example, there are 6 ways to cover a 2 X 5 room, described by 11111, 2111, 1211, 1121, 1112, 212.
Equivalently, number of compositions (ordered partitions) of n-1 into parts 1 and 2 with no two 2's adjacent. E.g., there are 6 such ways to partition 5, namely 11111, 2111, 1211, 1121, 1112, 212, so a(6) = 6. [Minor edit by Keyang Li, Oct 10 2020]
This comment covers a family of sequences which satisfy a recurrence of the form a(n) = a(n-1) + a(n-m), with a(n) = 1 for n = 0...m-1. The generating function is 1/(1-x-x^m). Also a(n) = Sum_{i=0..floor(n/m)} binomial(n-(m-1)*i, i). This family of binomial summations or recurrences gives the number of ways to cover (without overlapping) a linear lattice of n sites with molecules that are m sites wide. Special case: m=1: A000079; m=4: A003269; m=5: A003520; m=6: A005708; m=7: A005709; m=8: A005710.
a(n+2) is the number of n-bit 0-1 sequences that avoid both 00 and 010. - David Callan, Mar 25 2004 [This can easily be proved by the Cluster Method - see for example the Noonan-Zeilberger article. - N. J. A. Sloane, Aug 29 2013]
a(n-4) is the number of n-bit sequences that start and end with 0 but avoid both 00 and 010. For n >= 6, such a sequence necessarily starts 011 and ends 110; deleting these 6 bits is a bijection to the preceding item. - David Callan, Mar 25 2004
Also number of compositions of n+1 into parts congruent to 1 mod m. Here m=3, A003269 for m=4, etc. - Vladeta Jovovic, Feb 09 2005
Row sums of Riordan array (1/(1-x^3), x/(1-x^3)). - Paul Barry, Feb 25 2005
Row sums of Riordan array (1,x(1+x^2)). - Paul Barry, Jan 12 2006
Starting with offset 1 = row sums of triangle A145580. - Gary W. Adamson, Oct 13 2008
Number of digits in A061582. - Dmitry Kamenetsky, Jan 17 2009
From Jon Perry, Nov 15 2010: (Start)
The family a(n) = a(n-1) + a(n-m) with a(n)=1 for n=0..m-1 can be generated by considering the sums (A102547):
1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10
1 3 6 10 15 21 28
1 4 10 20
1
------------------------------
1 1 1 2 3 4 6 9 13 19 28 41 60
with (in this case 3) leading zeros added to each row.
(End)
Number of pairs of rabbits existing at period n generated by 1 pair. All pairs become fertile after 3 periods and generate thereafter a new pair at all following periods. - Carmine Suriano, Mar 20 2011
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=3, 2*a(n-3) equals the number of 2-colored compositions of n with all parts >= 3, such that no adjacent parts have the same color. - Milan Janjic, Nov 27 2011
For n>=2, row sums of Pascal's triangle (A007318) with triplicated diagonals. - Vladimir Shevelev, Apr 12 2012
Pisano period lengths of the sequence read mod m, m >= 1: 1, 7, 8, 14, 31, 56, 57, 28, 24, 217, 60, 56, 168, ... (A271953) If m=3, for example, the remainder sequence becomes 1, 1, 1, 2, 0, 1, 0, 0, 1, 1, 1, 2, 0, 1, 0, 0, 1, 1, 1, 2, 0, 1, 0, 0, 1, 1, 1, 2, 0, 1, 0, 0, 1, 1, ... with a period of length 8. - R. J. Mathar, Oct 18 2012
Diagonal sums of triangle A011973. - John Molokach, Jul 06 2013
"In how many ways can a kangaroo jump through all points of the integer interval [1,n+1] starting at 1 and ending at n+1, while making hops that are restricted to {-1,1,2}? (The OGF is the rational function 1/(1 - z - z^3) corresponding to A000930.)" [Flajolet and Sedgewick, p. 373] - N. J. A. Sloane, Aug 29 2013
a(n) is the number of length n binary words in which the length of every maximal run of consecutive 0's is a multiple of 3. a(5) = 4 because we have: 00011, 10001, 11000, 11111. - Geoffrey Critzer, Jan 07 2014
a(n) is the top left entry of the n-th power of the 3X3 matrix [1, 0, 1; 1, 0, 0; 0, 1, 0] or of the 3 X 3 matrix [1, 1, 0; 0, 0, 1; 1, 0, 0]. - R. J. Mathar, Feb 03 2014
a(n-3) is the top left entry of the n-th power of any of the 3 X 3 matrices [0, 1, 0; 0, 1, 1; 1, 0, 0], [0, 0, 1; 1, 1, 0; 0, 1, 0], [0, 1, 0; 0, 0, 1; 1, 0, 1] or [0, 0, 1; 1, 0, 0; 0, 1, 1]. - R. J. Mathar, Feb 03 2014
Counts closed walks of length (n+3) on a unidirectional triangle, containing a loop at one of remaining vertices. - David Neil McGrath, Sep 15 2014
a(n+2) equals the number of binary words of length n, having at least two zeros between every two successive ones. - Milan Janjic, Feb 07 2015
a(n+1)/a(n) tends to x = 1.465571... (decimal expansion given in A092526) in the limit n -> infinity. This is the real solution of x^3 - x^2 -1 = 0. See also the formula by Benoit Cloitre, Nov 30 2002. - Wolfdieter Lang, Apr 24 2015
a(n+2) equals the number of subsets of {1,2,..,n} in which any two elements differ by at least 3. - Robert FERREOL, Feb 17 2016
Let T* be the infinite tree with root 0 generated by these rules: if p is in T*, then p+1 is in T* and x*p is in T*. Let g(n) be the set of nodes in the n-th generation, so that g(0) = {0}, g(1) = {1}, g(2) = {2,x}, g(3) = {3,2x,x+1,x^2}, etc. Let T(r) be the tree obtained by substituting r for x. If a positive integer N such that r = N^(1/3) is not an integer, then the number of (not necessarily distinct) integers in g(n) is A000930(n), for n >= 1. (See A274142.) - Clark Kimberling, Jun 13 2016
a(n-3) is the number of compositions of n excluding 1 and 2, n >= 3. - Gregory L. Simay, Jul 12 2016
Antidiagonal sums of array A277627. - Paul Curtz, May 16 2019
a(n+1) is the number of multus bitstrings of length n with no runs of 3 ones. - Steven Finch, Mar 25 2020
Suppose we have a(n) samples, exactly one of which is positive. Assume the cost for testing a mix of k samples is 3 if one of the samples is positive (but you will not know which sample was positive if you test more than 1) and 1 if none of the samples is positive. Then the cheapest strategy for finding the positive sample is to have a(n-3) undergo the first test and then continue with testing either a(n-4) if none were positive or with a(n-6) otherwise. The total cost of the tests will be n. - Ruediger Jehn, Dec 24 2020

Examples

			The number of compositions of 11 without any 1's and 2's is a(11-3) = a(8) = 13. The compositions are (11), (8,3), (3,8), (7,4), (4,7), (6,5), (5,6), (5,3,3), (3,5,3), (3,3,5), (4,4,3), (4,3,4), (3,4,4). - _Gregory L. Simay_, Jul 12 2016
The compositions from the above example may be mapped to the a(8) compositions of 8 into 1's and 3's using this (more generally applicable) method: replace all numbers greater than 3 with a 3 followed by 1's to make the same total, then remove the initial 3 from the composition. Maintaining the example's order, they become (1,1,1,1,1,1,1,1), (1,1,1,1,1,3), (3,1,1,1,1,1), (1,1,1,1,3,1), (1,3,1,1,1,1), (1,1,1,3,1,1), (1,1,3,1,1,1), (1,1,3,3), (3,1,1,3), (3,3,1,1), (1,3,1,3), (1,3,3,1), (3,1,3,1). - _Peter Munn_, May 31 2017
		

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A., 2003, id. 8,80.
  • R. K. Guy, "Anyone for Twopins?" in D. A. Klarner, editor, The Mathematical Gardner. Prindle, Weber and Schmidt, Boston, 1981, pp. 2-15. [See p. 12, line 3]
  • H. Langman, Play Mathematics. Hafner, NY, 1962, p. 13.
  • David Sankoff and Lani Haque, Power Boosts for Cluster Tests, in Comparative Genomics, Lecture Notes in Computer Science, Volume 3678/2005, Springer-Verlag. - N. J. A. Sloane, Jul 09 2009
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

For Lamé sequences of orders 1 through 9 see A000045, this sequence, and A017898 - A017904.
Essentially the same as A068921 and A078012.
See also A001609, A145580, A179070, A214551 (same rule except divide by GCD).
A271901 and A271953 give the period of this sequence mod n.
A120562 has the same recurrence for odd n.

Programs

  • GAP
    a:=[1,1,1];; for n in [4..50] do a[n]:=a[n-1]+a[n-3]; od; a; # Muniru A Asiru, Aug 13 2018
    
  • Haskell
    a000930 n = a000930_list !! n
    a000930_list = 1 : 1 : 1 : zipWith (+) a000930_list (drop 2 a000930_list)
    -- Reinhard Zumkeller, Sep 25 2011
    
  • Magma
    [1,1] cat [ n le 3 select n else Self(n-1)+Self(n-3): n in [1..50] ]; // Vincenzo Librandi, Apr 25 2015
    
  • Maple
    f := proc(r) local t1,i; t1 := []; for i from 1 to r do t1 := [op(t1),0]; od: for i from 1 to r+1 do t1 := [op(t1),1]; od: for i from 2*r+2 to 50 do t1 := [op(t1),t1[i-1]+t1[i-1-r]]; od: t1; end; # set r = order
    with(combstruct): SeqSetU := [S, {S=Sequence(U), U=Set(Z, card > 2)}, unlabeled]: seq(count(SeqSetU, size=j), j=3..40); # Zerinvary Lajos, Oct 10 2006
    A000930 := proc(n)
        add(binomial(n-2*k,k),k=0..floor(n/3)) ;
    end proc: # Zerinvary Lajos, Apr 03 2007
    a:= n-> (<<1|1|0>, <0|0|1>, <1|0|0>>^n)[1,1]:
    seq(a(n), n=0..50); # Alois P. Heinz, Jun 20 2008
  • Mathematica
    a[0] = 1; a[1] = a[2] = 1; a[n_] := a[n] = a[n - 1] + a[n - 3]; Table[ a[n], {n, 0, 40} ]
    CoefficientList[Series[1/(1 - x - x^3), {x, 0, 45}], x] (* Zerinvary Lajos, Mar 22 2007 *)
    LinearRecurrence[{1, 0, 1}, {1, 1, 1}, 80] (* Vladimir Joseph Stephan Orlovsky, Feb 11 2012 *)
    a[n_] := HypergeometricPFQ[{(1 - n)/3, (2 - n)/3, -n/3}, {(1 - n)/ 2, -n/2}, -27/4]; Table[a[n], {n, 0, 43}] (* Jean-François Alcover, Feb 26 2013 *)
    Table[-RootSum[1 + #^2 - #^3 &, 3 #^(n + 2) - 11 #^(n + 3) + 2 #^(n + 4) &]/31, {n, 20}] (* Eric W. Weisstein, Feb 14 2025 *)
  • Maxima
    makelist(sum(binomial(n-2*k,k),k,0,n/3),n,0,18); /* Emanuele Munarini, May 24 2011 */
    
  • PARI
    a(n)=polcoeff(exp(sum(m=1,n,((1+sqrt(1+4*x))^m + (1-sqrt(1+4*x))^m)*(x/2)^m/m)+x*O(x^n)),n) \\ Paul D. Hanna, Oct 08 2009
    
  • PARI
    x='x+O('x^66); Vec(1/(1-(x+x^3))) \\ Joerg Arndt, May 24 2011
    
  • PARI
    a(n)=([0,1,0;0,0,1;1,0,1]^n*[1;1;1])[1,1] \\ Charles R Greathouse IV, Feb 26 2017
    
  • Python
    from itertools import islice
    def A000930_gen(): # generator of terms
        blist = [1]*3
        while True:
            yield blist[0]
            blist = blist[1:]+[blist[0]+blist[2]]
    A000930_list = list(islice(A000930_gen(),30)) # Chai Wah Wu, Feb 04 2022
    
  • SageMath
    @CachedFunction
    def a(n): # A000930
        if (n<3): return 1
        else: return a(n-1) + a(n-3)
    [a(n) for n in (0..80)] # G. C. Greubel, Jul 29 2022

Formula

G.f.: 1/(1-x-x^3). - Simon Plouffe in his 1992 dissertation
a(n) = Sum_{i=0..floor(n/3)} binomial(n-2*i, i).
a(n) = a(n-2) + a(n-3) + a(n-4) for n>3.
a(n) = floor(d*c^n + 1/2) where c is the real root of x^3-x^2-1 and d is the real root of 31*x^3-31*x^2+9*x-1 (c = 1.465571... = A092526 and d = 0.611491991950812...). - Benoit Cloitre, Nov 30 2002
a(n) = Sum_{k=0..n} binomial(floor((n+2k-2)/3), k). - Paul Barry, Jul 06 2004
a(n) = Sum_{k=0..n} binomial(k, floor((n-k)/2))(1+(-1)^(n-k))/2. - Paul Barry, Jan 12 2006
a(n) = Sum_{k=0..n} binomial((n+2k)/3,(n-k)/3)*(2*cos(2*Pi*(n-k)/3)+1)/3. - Paul Barry, Dec 15 2006
a(n) = term (1,1) in matrix [1,1,0; 0,0,1; 1,0,0]^n. - Alois P. Heinz, Jun 20 2008
G.f.: exp( Sum_{n>=1} ((1+sqrt(1+4*x))^n + (1-sqrt(1+4*x))^n)*(x/2)^n/n ).
Logarithmic derivative equals A001609. - Paul D. Hanna, Oct 08 2009
a(n) = a(n-1) + a(n-2) - a(n-5) for n>4. - Paul Weisenhorn, Oct 28 2011
For n >= 2, a(2*n-1) = a(2*n-2)+a(2*n-4); a(2*n) = a(2*n-1)+a(2*n-3). - Vladimir Shevelev, Apr 12 2012
INVERT transform of (1,0,0,1,0,0,1,0,0,1,...) = (1, 1, 1, 2, 3, 4, 6, ...); but INVERT transform of (1,0,1,0,0,0,...) = (1, 1, 2, 3, 4, 6, ...). - Gary W. Adamson, Jul 05 2012
G.f.: 1/(G(0)-x) where G(k) = 1 - x^2/(1 - x^2/(x^2 - 1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Dec 16 2012
G.f.: 1 + x/(G(0)-x) where G(k) = 1 - x^2*(2*k^2 + 3*k +2) + x^2*(k+1)^2*(1 - x^2*(k^2 + 3*k +2))/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 27 2012
a(2*n) = A002478(n), a(2*n+1) = A141015(n+1), a(3*n) = A052544(n), a(3*n+1) = A124820(n), a(3*n+2) = A052529(n+1). - Johannes W. Meijer, Jul 21 2013, corrected by Greg Dresden, Jul 06 2020
G.f.: Q(0)/2, where Q(k) = 1 + 1/(1 - x*(4*k+1 + x^2)/( x*(4*k+3 + x^2) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 08 2013
a(n) = v1*w1^n+v3*w2^n+v2*w3^n, where v1,2,3 are the roots of (-1+9*x-31*x^2+31*x^3): [v1=0.6114919920, v2=0.1942540040 - 0.1225496913*I, v3=conjugate(v2)] and w1,2,3 are the roots of (-1-x^2+x^3): [w1=1.4655712319, w2=-0.2327856159 - 0.7925519925*I, w3=conjugate(w2)]. - Gerry Martens, Jun 27 2015
a(n) = (6*A001609(n+3) + A001609(n-7))/31 for n>=7. - Areebah Mahdia, Jun 07 2020
a(n+6)^2 + a(n+1)^2 + a(n)^2 = a(n+5)^2 + a(n+4)^2 + 3*a(n+3)^2 + a(n+2)^2. - Greg Dresden, Jul 07 2021
a(n) = Sum_{i=(n-7)..(n-1)} a(i) / 2. - Jules Beauchamp, May 10 2025

Extensions

Name expanded by N. J. A. Sloane, Sep 07 2012

A000931 Padovan sequence (or Padovan numbers): a(n) = a(n-2) + a(n-3) with a(0) = 1, a(1) = a(2) = 0.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, 200, 265, 351, 465, 616, 816, 1081, 1432, 1897, 2513, 3329, 4410, 5842, 7739, 10252, 13581, 17991, 23833, 31572, 41824, 55405, 73396, 97229, 128801, 170625
Offset: 0

Views

Author

Keywords

Comments

Number of compositions of n into parts congruent to 2 mod 3 (offset -1). - Vladeta Jovovic, Feb 09 2005
a(n) is the number of compositions of n into parts that are odd and >= 3. Example: a(10)=3 counts 3+7, 5+5, 7+3. - David Callan, Jul 14 2006
Referred to as N0102 in R. K. Guy's "Anyone for Twopins?" - Rainer Rosenthal, Dec 05 2006
Zagier conjectures that a(n+3) is the maximum number of multiple zeta values of weight n > 1 which are linearly independent over the rationals. - Jonathan Sondow and Sergey Zlobin (sirg_zlobin(AT)mail.ru), Dec 20 2006
Starting with offset 6: (1, 1, 2, 2, 3, 4, 5, ...) = INVERT transform of A106510: (1, 1, -1, 0, 1, -1, 0, 1, -1, ...). - Gary W. Adamson, Oct 10 2008
Starting with offset 7, the sequence 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, ... is called the Fibonacci quilt sequence by Catral et al., in Fib. Q. 2017. - N. J. A. Sloane, Dec 24 2021
Triangle A145462: right border = A000931 starting with offset 6. Row sums = Padovan sequence starting with offset 7. - Gary W. Adamson, Oct 10 2008
Starting with offset 3 = row sums of triangle A146973 and INVERT transform of [1, -1, 2, -2, 3, -3, ...]. - Gary W. Adamson, Nov 03 2008
a(n+5) corresponds to the diagonal sums of "triangle": 1; 1; 1,1; 1,1; 1,2,1; 1,2,1; 1,3,3,1; 1,3,3,1; 1,4,6,4,1; ..., rows of Pascal's triangle (A007318) repeated. - Philippe Deléham, Dec 12 2008
With offset 3: (1, 0, 1, 1, 1, 2, 2, ...) convolved with the tribonacci numbers prefaced with a "1": (1, 1, 1, 2, 4, 7, 13, ...) = the tribonacci numbers, A000073. (Cf. triangle A153462.) - Gary W. Adamson, Dec 27 2008
a(n) is also the number of strings of length (n-8) from an alphabet {A, B} with no more than one A or 2 B's consecutively. (E.g., n = 4: {ABAB,ABBA,BABA,BABB,BBAB} and a(4+8) = 5.) - Toby Gottfried, Mar 02 2010
p(n):=A000931(n+3), n >= 1, is the number of partitions of the numbers {1,2,3,...,n} into lists of length two or three containing neighboring numbers. The 'or' is inclusive. For n=0 one takes p(0)=1. For details see the W. Lang link. There the explicit formula for p(n) (analog of the Binet-de Moivre formula for Fibonacci numbers) is also given. Padovan sequences with different inputs are also considered there. - Wolfdieter Lang, Jun 15 2010
Equals the INVERTi transform of Fibonacci numbers prefaced with three 1's, i.e., (1 + x + x^2 + x^3 + x^4 + 2x^5 + 3x^6 + 5x^7 + 8x^8 + 13x^9 + ...). - Gary W. Adamson, Apr 01 2011
When run backwards gives (-1)^n*A050935(n).
a(n) is the top left entry of the n-th power of the 3 X 3 matrix [0, 0, 1; 1, 0, 1; 0, 1, 0] or of the 3 X 3 matrix [0, 1, 0; 0, 0, 1; 1, 1, 0]. - R. J. Mathar, Feb 03 2014
Figure 4 of Brauchart et al., 2014, shows a way to "visualize the Padovan sequence as cuboid spirals, where the dimensions of each cuboid made up by the previous ones are given by three consecutive numbers in the sequence". - N. J. A. Sloane, Mar 26 2014
a(n) is the number of closed walks from a vertex of a unidirectional triangle containing an opposing directed edge (arc) between the second and third vertices. Equivalently the (1,1) entry of A^n where the adjacency matrix of digraph is A=(0,1,0;0,0,1;1,1,0). - David Neil McGrath, Dec 19 2014
Number of compositions of n-3 (n >= 4) into 2's and 3's. Example: a(12)=5 because we have 333, 3222, 2322, 2232, and 2223. - Emeric Deutsch, Dec 28 2014
The Hoffman (2015) paper "offers significant evidence that the number of quantities needed to generate the weight-n multiple harmonic sums mod p is" a(n). - N. J. A. Sloane, Jun 24 2016
a(n) gives the number of compositions of n-5 into odd parts where the order of the 1's does not matter. For example, a(11)=4 counts the following compositions of 6: (5,1)=(1,5), (3,3), (3,1,1,1)=(1,3,1,1)=(1,1,3,1)=(1,1,1,3), (1,1,1,1,1,1). - Gregory L. Simay, Aug 04 2016
For n > 6, a(n) is the number of maximal matchings in the (n-5)-path graph, maximal independent vertex sets and minimal vertex covers in the (n-6)-path graph, and minimal edge covers in the (n-5)-pan graph and (n-3)-path graphs. - Eric W. Weisstein, Mar 30, Aug 03, and Aug 07 2017
From James Mitchell and Wilf A. Wilson, Jul 21 2017: (Start)
a(2n + 5) + 2n - 4, n > 2, is the number of maximal subsemigroups of the monoid of order-preserving mappings on a set with n elements.
a(n + 6) + n - 3, n > 3, is the number of maximal subsemigroups of the monoid of order-preserving or reversing mappings on a set with n elements.
(End)
Has the property that the largest of any four consecutive terms equals the sum of the two smallest. - N. J. A. Sloane, Aug 29 2017 [David Nacin points out that there are many sequences with this property, such as 1,1,1,2,1,1,1,2,1,1,1,2,... or 2,3,4,5,2,3,4,5,2,3,4,5,... or 2,2,1,3,3, 4,1,4, 5,5,1,6,6, 7,1,7, 8,8,1,9,9, 10,1,10, ... (spaces added for clarity), and a conjecture I made here in 2017 was simply wrong. I have deleted it. - N. J. A. Sloane, Oct 23 2018]
a(n) is also the number of maximal cliques in the (n+6)-path complement graph. - Eric W. Weisstein, Apr 12 2018
a(n+8) is the number of solus bitstrings of length n with no runs of 3 zeros. - Steven Finch, Mar 25 2020
Named after the architect Richard Padovan (b. 1935). - Amiram Eldar, Jun 08 2021
Shannon et al. (2006) credit a French architecture student Gérard Cordonnier with the discovery of these numbers.
For n >= 3, a(n) is the number of sequences of 0s and 1s of length (n-2) that begin with a 0, end with a 0, contain no two consecutive 0s, and contain no three consecutive 1s. - Yifan Xie, Oct 20 2022
For n >= 2, a(n+5) is the number of ways to tile the 1xn board with dominoes and squares (ie. size 1x1) such that are either none or one squares between dominoes, none or one squares at both ends of the board, and there is at least one domino. For example, for n=6, a(11)=4 since the tilings are |2|2, |22|, 2|2| and 222 (where 2 represents a domino and | a square). - Enrique Navarrete, Aug 31 2024

Examples

			G.f. = 1 + x^3 + x^5 + x^6 + x^7 + 2*x^8 + 2*x^9 + 3*x^10 + 4*x^11 + ...
		

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 47, ex. 4.
  • Minerva Catral, Pari L. Ford, Pamela E. Harris, Steven J. Miller, Dawn Nelson, Zhao Pan, and Huanzhong Xu, Legal Decompositions Arising from Non-positive Linear Recurrences, Fib. Quart., 55:3 (2017), 252-275. [Note that there is an earlier version of this paper, with only five authors, on the arXiv in 2016. Note to editors: do not merge these two citations. - N. J. A. Sloane, Dec 24 2021]
  • Richard K. Guy, "Anyone for Twopins?" in D. A. Klarner, editor, The Mathematical Gardner. Prindle, Weber and Schmidt, Boston, 1981, pp. 10-11.
  • Silvia Heubach and Toufik Mansour, Combinatorics of Compositions and Words, CRC Press, 2010.
  • A. G. Shannon, P. G. Anderson and A. F. Horadam, Properties of Cordonnier, Perrin and Van der Laan numbers, International Journal of Mathematical Education in Science and Technology, Volume 37:7 (2006), 825-831. See P_n.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Ian Stewart, L'univers des nombres, "La sculpture et les nombres", pp. 19-20, Belin-Pour La Science, Paris, 2000.
  • Hans van der Laan, Het plastische getal. XV lessen over de grondslagen van de architectonische ordonnantie. Leiden, E.J. Brill, 1967.
  • Don Zagier, Values of zeta functions and their applications, in First European Congress of Mathematics (Paris, 1992), Vol. II, A. Joseph et al. (eds.), Birkhäuser, Basel, 1994, pp. 497-512.

Crossrefs

The following are basically all variants of the same sequence: A000931, A078027, A096231, A124745, A133034, A134816, A164001, A182097, A228361 and probably A020720. However, each one has its own special features and deserves its own entry.
Closely related to A001608.
Doubling every term gives A291289.

Programs

  • GAP
    a:=[1,0,0];; for n in [4..50] do a[n]:=a[n-2]+a[n-3]; od; a; # G. C. Greubel, Dec 30 2019
    
  • Haskell
    a000931 n = a000931_list !! n
    a000931_list = 1 : 0 : 0 : zipWith (+) a000931_list (tail a000931_list)
    -- Reinhard Zumkeller, Feb 10 2011
    
  • Magma
    I:=[1,0,0]; [n le 3 select I[n] else Self(n-2) + Self(n-3): n in [1..60]]; // Vincenzo Librandi, Jul 21 2015
    
  • Maple
    A000931 := proc(n) option remember; if n = 0 then 1 elif n <= 2 then 0 else procname(n-2)+procname(n-3); fi; end;
    A000931:=-(1+z)/(-1+z^2+z^3); # Simon Plouffe in his 1992 dissertation; gives sequence without five leading terms
    a[0]:=1; a[1]:=0; a[2]:=0; for n from 3 to 50 do a[n]:=a[n-2]+a[n-3]; end do; # Francesco Daddi, Aug 04 2011
  • Mathematica
    CoefficientList[Series[(1-x^2)/(1-x^2-x^3), {x, 0, 50}], x]
    a[0]=1; a[1]=a[2]=0; a[n_]:= a[n]= a[n-2] + a[n-3]; Table[a[n], {n, 0, 50}] (* Robert G. Wilson v, May 04 2006 *)
    LinearRecurrence[{0,1,1}, {1,0,0}, 50] (* Harvey P. Dale, Jan 10 2012 *)
    Table[RootSum[-1 -# +#^3 &, 5#^n -6#^(n+1) +4#^(n+2) &]/23, {n,0,50}] (* Eric W. Weisstein, Nov 09 2017 *)
  • PARI
    Vec((1-x^2)/(1-x^2-x^3) + O(x^50)) \\ Charles R Greathouse IV, Feb 11 2011
    
  • PARI
    {a(n) = if( n<0, polcoeff(1/(1+x-x^3) + x * O(x^-n), -n), polcoeff( (1 - x^2)/(1-x^2-x^3) + x * O(x^n), n))}; /* Michael Somos, Sep 18 2012 */
    
  • Python
    def aupton(nn):
        alst = [1, 0, 0]
        for n in range(3, nn+1): alst.append(alst[n-2]+alst[n-3])
        return alst
    print(aupton(49)) # Michael S. Branicky, Mar 28 2022
  • Sage
    def A000931_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-x^2)/(1-x^2-x^3) ).list()
    A000931_list(50) # G. C. Greubel, Dec 30 2019
    

Formula

G.f.: (1-x^2)/(1-x^2-x^3).
a(n) is asymptotic to r^n / (2*r+3) where r = 1.3247179572447... = A060006, the real root of x^3 = x + 1. - Philippe Deléham, Jan 13 2004
a(n)^2 + a(n+2)^2 + a(n+6)^2 = a(n+1)^2 + a(n+3)^2 + a(n+4)^2 + a(n+5)^2 (Barniville, Question 16884, Ed. Times 1911).
a(n+5) = a(0) + a(1) + ... + a(n).
a(n) = central and lower right terms in the (n-3)-th power of the 3 X 3 matrix M = [0 1 0 / 0 0 1 / 1 1 0]. E.g., a(13) = 7. M^10 = [3 5 4 / 4 7 5 / 5 9 7]. - Gary W. Adamson, Feb 01 2004
G.f.: 1/(1 - x^3 - x^5 - x^7 - x^9 - ...). - Jon Perry, Jul 04 2004
a(n+4) = Sum_{k=0..floor((n-1)/2)} binomial(floor((n+k-2)/3), k). - Paul Barry, Jul 06 2004
a(n+3) = Sum_{k=0..floor(n/2)} binomial(k, n-2k). - Paul Barry, Sep 17 2004, corrected by Greg Dresden and Zi Ye, Jul 06 2021
a(n+3) is diagonal sum of A026729 (as a number triangle), with formula a(n+3) = Sum_{k=0..floor(n/2)} Sum_{i=0..n-k} (-1)^(n-k+i)*binomial(n-k, i)*binomial(i+k, i-k). - Paul Barry, Sep 23 2004
a(n) = a(n-1) + a(n-5) = A003520(n-4) + A003520(n-13) = A003520(n-3) - A003520(n-9). - Henry Bottomley, Jan 30 2005
a(n+3) = Sum_{k=0..floor(n/2)} binomial((n-k)/2, k)(1+(-1)^(n-k))/2. - Paul Barry, Sep 09 2005
The sequence 1/(1-x^2-x^3) (a(n+3)) is given by the diagonal sums of the Riordan array (1/(1-x^3), x/(1-x^3)). The row sums are A000930. - Paul Barry, Feb 25 2005
a(n) = A023434(n-7) + 1 for n >= 7. - David Callan, Jul 14 2006
a(n+5) corresponds to the diagonal sums of A030528. The binomial transform of a(n+5) is A052921. a(n+5) = Sum_{k=0..floor(n/2)} Sum_{k=0..n} (-1)^(n-k+i)*binomial(n-k, i)binomial(i+k+1, 2k+1). - Paul Barry, Jun 21 2004
r^(n-1) = (1/r)*a(n) + r*a(n+1) + a(n+2), where r = 1.32471... is the real root of x^3 - x - 1 = 0. Example: r^8 = (1/r)*a(9) + r*a(10) + a(11) = (1/r)*2 + r*3 + 4 = 9.483909... - Gary W. Adamson, Oct 22 2006
a(n) = (r^n)/(2r+3) + (s^n)/(2s+3) + (t^n)/(2t+3) where r, s, t are the three roots of x^3-x-1. - Keith Schneider (schneidk(AT)email.unc.edu), Sep 07 2007
a(n) = -k*a(n-1) + a(n-2) + (k+1)a(n-2) + k*a(n-4), n > 3, for any value of k. - Gary Detlefs, Sep 13 2010
From Francesco Daddi, Aug 04 2011: (Start)
a(0) + a(2) + a(4) + a(6) + ... + a(2*n) = a(2*n+3).
a(0) + a(3) + a(6) + a(9) + ... + a(3*n) = a(3*n+2)+1.
a(0) + a(5) + a(10) + a(15) + ... + a(5*n) = a(5*n+1)+1.
a(0) + a(7) + a(14) + a(21) + ... + a(7*n) = (a(7*n) + a(7*n+1) + 1)/2. (End)
a(n+3) = Sum_{k=0..floor((n+1)/2)} binomial((n+k)/3,k), where binomial((n+k)/3,k)=0 for noninteger (n+k)/3. - Nikita Gogin, Dec 07 2012
a(n) = A182097(n-3) for n > 2. - Jonathan Sondow, Mar 14 2014
a(n) = the k-th difference of a(n+5k) - a(n+5k-1), k>=1. For example, a(10)=3 => a(15)-a(14) => 2nd difference of a(20)-a(19) => 3rd difference of a(25)-a(24)... - Bob Selcoe, Mar 18 2014
Construct the power matrix T(n,j) = [A^*j]*[S^*(j-1)] where A=(0,0,1,0,1,0,1,...) and S=(0,1,0,0,...) or A063524. [* is convolution operation] Define S^*0=I with I=(1,0,0,...). Then a(n) = Sum_{j=1...n} T(n,j). - David Neil McGrath, Dec 19 2014
If x=a(n), y=a(n+1), z=a(n+2), then x^3 + 2*y*x^2 - z^2*x - 3*y*z*x + y^2*x + y^3 - y^2*z + z^3 = 1. - Alexander Samokrutov, Jul 20 2015
For the sequence shifted by 6 terms, a(n) = Sum_{k=ceiling(n/3)..ceiling(n/2)} binomial(k+1,3*k-n) [Doslic-Zubac]. - N. J. A. Sloane, Apr 23 2017
From Joseph M. Shunia, Jan 21 2020: (Start)
a(2n) = 2*a(n-1)*a(n) + a(n)^2 + a(n+1)^2, for n > 8.
a(2n-1) = 2*a(n)*a(n+1) + a(n-1)^2, for n > 8.
a(2n+1) = 2*a(n+1)*a(n+2) + a(n)^2, for n > 7. (End)
0*a(0) + 1*a(1) + 2*a(2) + ... + n*a(n) = n*a(n+5) - a(n+9) + 2. - Greg Dresden and Zi Ye, Jul 02 2021
From Greg Dresden and Zi Ye, Jul 06 2021: (Start)
2*a(n) = a(n+2) + a(n-5) for n >= 5.
3*a(n) = a(n+4) - a(n-9) for n >= 9.
4*a(n) = a(n+5) - a(n-9) for n >= 9. (End)

Extensions

Edited by Charles R Greathouse IV, Mar 17 2010
Deleted certain dangerous or potentially dangerous links. - N. J. A. Sloane, Jan 30 2021

A003269 a(n) = a(n-1) + a(n-4) with a(0) = 0, a(1) = a(2) = a(3) = 1.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 3, 4, 5, 7, 10, 14, 19, 26, 36, 50, 69, 95, 131, 181, 250, 345, 476, 657, 907, 1252, 1728, 2385, 3292, 4544, 6272, 8657, 11949, 16493, 22765, 31422, 43371, 59864, 82629, 114051, 157422, 217286, 299915, 413966, 571388, 788674, 1088589, 1502555, 2073943
Offset: 0

Views

Author

Keywords

Comments

This comment covers a family of sequences which satisfy a recurrence of the form a(n) = a(n-1) + a(n-m), with a(n) = 1 for n = 0..m-1. The generating function is 1/(1-x-x^m). Also a(n) = Sum_{i=0..n/m} binomial(n-(m-1)*i, i). This family of binomial summations or recurrences gives the number of ways to cover (without overlapping) a linear lattice of n sites with molecules that are m sites wide. Special case: m=1: A000079; m=4: A003269; m=5: A003520; m=6: A005708; m=7: A005709; m=8: A005710.
For this family of sequences, a(n+1) is the number of compositions of n+1 into parts 1 and m. For n>=m, a(n-m+1)is the number of compositions of n in which each part is greater than m or equivalently, in which parts 1 through m are excluded. - Gregory L. Simay, Jul 14 2016
For this family of sequences, let a(m,n) = a(n-1) + a(n-m). Then the number of compositions of n having m as a least summand is a(m, n-m) - a(m+1, n-m-1). - Gregory L. Simay, Jul 14 2016
For n>=3, a(n-3) = number of compositions of n in which each part is >=4. - Milan Janjic, Jun 28 2010
For n>=1, number of compositions of n into parts == 1 (mod 4). Example: a(8)=5 because there are 5 compositions of 8 into parts 1 or 5: (1,1,1,1,1,1,1,1), (1,1,1,5), (1,1,5,1), (1,5,1,1), (5,1,1,1). - Adi Dani, Jun 16 2011
a(n+1) is the number of compositions of n into parts 1 and 4. - Joerg Arndt, Jun 25 2011
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=4, 2*a(n-3) equals the number of 2-colored compositions of n with all parts >= 4, such that no adjacent parts have the same color. - Milan Janjic, Nov 27 2011
Number of permutations satisfying -k<=p(i)-i<=r and p(i)-i not in I, i=1..n, with k=1, r=3, I={1,2}. - Vladimir Baltic, Mar 07 2012
a(n+4) equals the number of binary words of length n having at least 3 zeros between every two successive ones. - Milan Janjic, Feb 07 2015
From Clark Kimberling, Jun 13 2016: (Start)
Let T* be the infinite tree with root 0 generated by these rules: if p is in T*, then p+1 is in T* and x*p is in T*.
Let g(n) be the set of nodes in the n-th generation, so that g(0) = {0}, g(1) = {1}, g(2) = {2,x}, g(3) = {3, 2*x, x+1, x^2}, etc.
Let T(r) be the tree obtained by substituting r for x.
If N is a positive integer such that r = N^(1/4) is not an integer, then the number of (not necessarily distinct) integers in g(n) is A003269(n), for n > = 1. See A274142. (End)

Examples

			G.f.: x + x^2 + x^3 + x^4 + 2*x^5 + 3*x^6 + 4*x^7 + 5*x^8 + 7*x^9 + 10*x^10 + ...
The number of compositions of 12 having 4 as a least summand is a(4, 12 -4 + 1) - a(5, 12 - 5 + 1) = A003269(9) - A003520(8) = 7-4 = 3. The compositions are (84), (48) and (444). - _Gregory L. Simay_, Jul 14 2016
		

References

  • A. Brousseau, Fibonacci and Related Number Theoretic Tables. Fibonacci Association, San Jose, CA, 1972, p. 120.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A017898 for an essentially identical sequence.
Row sums of A180184.

Programs

  • Haskell
    a003269 n = a003269_list !! n
    a003269_list = 0 : 1 : 1 : 1 : zipWith (+) a003269_list
                                              (drop 3 a003269_list)
    -- Reinhard Zumkeller, Feb 27 2011
    
  • Magma
    I:=[0,1,1,1]; [n le 4 select I[n] else Self(n-1) + Self(n-4) :n in [1..50]]; // Marius A. Burtea, Sep 13 2019
    
  • Maple
    with(combstruct): SeqSetU := [S, {S=Sequence(U), U=Set(Z, card > 3)}, unlabeled]: seq(count(SeqSetU, size=j), j=4..51);
    seq(add(binomial(n-3*k,k),k=0..floor(n/3)),n=0..47); # Zerinvary Lajos, Apr 03 2007
    A003269:=z/(1-z-z**4); # Simon Plouffe in his 1992 dissertation
    ZL:=[S, {a = Atom, b = Atom, S = Prod(X,Sequence(Prod(X,b))), X = Sequence(b,card >= 3)}, unlabelled]: seq(combstruct[count](ZL, size=n), n=3..50); # Zerinvary Lajos, Mar 26 2008
    M:= Matrix(4, (i,j)-> if j=1 then [1,0,0,1][i] elif (i=j-1) then 1 else 0 fi); a:= n-> (M^(n))[1,2]; seq(a(n), n=0..48); # Alois P. Heinz, Jul 27 2008
  • Mathematica
    a[0]= 0; a[1]= a[2]= a[3]= 1; a[n_]:= a[n]= a[n-1] + a[n-4]; Table[a[n], {n,0,50}]
    CoefficientList[Series[x/(1-x-x^4), {x,0,50}], x] (* Zerinvary Lajos, Mar 29 2007 *)
    Table[Sum[Binomial[n-3*i-1,i], {i,0,(n-1)/3}], {n,0,50}]
    LinearRecurrence[{1,0,0,1}, {0,1,1,1}, 50] (* Robert G. Wilson v, Jul 12 2014 *)
    nxt[{a_,b_,c_,d_}]:={b,c,d,a+d}; NestList[nxt,{0,1,1,1},50][[;;,1]] (* Harvey P. Dale, May 27 2024 *)
  • PARI
    {a(n) = polcoeff( if( n<0, (1 + x^3) / (1 + x^3 - x^4), 1 / (1 - x - x^4)) + x * O(x^abs(n)), abs(n))} /* Michael Somos, Jul 12 2003 */
    
  • SageMath
    @CachedFunction
    def a(n): return ((n+2)//3) if (n<4) else a(n-1) + a(n-4) # a = A003269
    [a(n) for n in (0..50)] # G. C. Greubel, Jul 25 2022

Formula

G.f.: x/(1-x-x^4).
G.f.: -1 + 1/(1-Sum_{k>=0} x^(4*k+1)).
a(n) = a(n-3) + a(n-4) + a(n-5) + a(n-6) for n>4.
a(n) = floor(d*c^n + 1/2) where c is the positive real root of -x^4+x^3+1 and d is the positive real root of 283*x^4-18*x^2-8*x-1 (c=1.38027756909761411... and d=0.3966506381592033124...). - Benoit Cloitre, Nov 30 2002
Equivalently, a(n) = floor(c^(n+3)/(c^4+3) + 1/2) with c as defined above (see A086106). - Greg Dresden and Shuer Jiang, Aug 31 2019
a(n) = term (1,2) in the 4 X 4 matrix [1,1,0,0; 0,0,1,0; 0,0,0,1; 1,0,0,0]^n. - Alois P. Heinz, Jul 27 2008
From Paul Barry, Oct 20 2009: (Start)
a(n+1) = Sum_{k=0..n} C((n+3*k)/4,k)*((1+(-1)^(n-k))/2 + cos(Pi*n/2))/2;
a(n+1) = Sum_{k=0..n} C(k,floor((n-k)/3))(2*cos(2*Pi*(n-k)/3)+1)/3. (End)
a(n) = Sum_{j=0..(n-1)/3} binomial(n-1-3*j,j) (cf. A180184). - Vladimir Kruchinin, May 23 2011
A017817(n) = a(-4 - n) * (-1)^n. - Michael Somos, Jul 12 2003
G.f.: Q(0)*x/2, where Q(k) = 1 + 1/(1 - x*(2*k+1 + x^3)/( x*(2*k+2 + x^3) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 29 2013
Appears a(n) = hypergeometric([1/4-n/4,1/2-n/4,3/4-n/4,1-n/4], [1/3-n/3,2/3-n/3,1-n/3], -4^4/3^3) for n>=10. - Peter Luschny, Sep 18 2014

Extensions

Additional comments from Yong Kong (ykong(AT)curagen.com), Dec 16 2000
Initial 0 prepended by N. J. A. Sloane, Apr 09 2008

A005709 a(n) = a(n-1) + a(n-7), with a(i) = 1 for i = 0..6.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 10, 13, 17, 22, 28, 35, 43, 53, 66, 83, 105, 133, 168, 211, 264, 330, 413, 518, 651, 819, 1030, 1294, 1624, 2037, 2555, 3206, 4025, 5055, 6349, 7973, 10010, 12565, 15771, 19796, 24851
Offset: 0

Views

Author

Keywords

Comments

This comment covers a family of sequences which satisfy a recurrence of the form a(n) = a(n-1) + a(n-m), with a(n) = 1 for n = 0...m-1. The generating function is 1/(1-x-x^m). Also a(n) = Sum_{i=0..n/m} binomial(n-(m-1)*i, i). This family of binomial summations or recurrences gives the number of ways to cover (without overlapping) a linear lattice of n sites with molecules that are m sites wide. Special case: m=1: A000079; m=4: A003269; m=5: A003520; m=6: A005708; m=7: A005709; m=8: A005710.
For n >= 7, a(n-7) is the number of compositions of n in which each part is >=7. - Milan Janjic, Jun 28 2010
Number of compositions of n into parts 1 and 7. - Joerg Arndt, Jun 24 2011
a(n+6) is the number of binary words of length n having at least 6 zeros between every two successive ones. - Milan Janjic, Feb 09 2015
Number of tilings of a 7 X n rectangle with 7 X 1 heptominoes. - M. Poyraz Torcuk, Feb 26 2022

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    A005709 := proc(n) option remember; if n <=6 then 1; else A005709(n-1)+A005709(n-7); fi; end;
    with(combstruct): SeqSetU := [S, {S=Sequence(U), U=Set(Z, card > 6)}, unlabeled]: seq(count(SeqSetU, size=j), j=7..55); # Zerinvary Lajos, Oct 10 2006
    ZL:=[S, {a = Atom, b = Atom, S = Prod(X,Sequence(Prod(X,b))), X = Sequence(b,card >= 6)}, unlabelled]: seq(combstruct[count](ZL, size=n), n=6..54); # Zerinvary Lajos, Mar 26 2008
    M:= Matrix(7, (i,j)-> if j=1 and member(i,[1,7]) then 1 elif (i=j-1) then 1 else 0 fi); a:= n-> (M^(n))[1,1]; seq(a(n), n=0..50); # Alois P. Heinz, Jul 27 2008
  • Mathematica
    f[ n_Integer ] := f[ n ]=If[ n>7, f[ n-1 ]+f[ n-7 ], 1 ]
    Table[Sum[Binomial[n-6*i, i], {i, 0, n/7}], {n, 0, 45}] (* Adi Dani, Jun 25 2011 *)
    LinearRecurrence[{1, 0, 0, 0, 0, 0, 1}, {1, 1, 1, 1, 1, 1, 1}, 80] (* Vladimir Joseph Stephan Orlovsky, Feb 16 2012 *)
  • PARI
    x='x+O('x^66); Vec(1/(1-(x+x^7))) /* Joerg Arndt, Jun 25 2011 */

Formula

G.f.: 1/(1-x-x^7). - Simon Plouffe in his 1992 dissertation.
For positive integers n and k such that k <= n <= 7*k, and 6 divides n-k, define c(n,k) = binomial(k,(n-k)/6), and c(n,k)=0, otherwise. Then, for n >= 1, a(n) = Sum_{k=1..n} c(n,k). - Milan Janjic, Dec 09 2011
Apparently a(n) = hypergeometric([1/7-n/7, 2/7-n/7, 3/7-n/7, 4/7-n/7, 5/7-n/7, 6/7-n/7, -n/7], [1/6-n/6, 1/3-n/6, 1/2-n/6, 2/3-n/6, 5/6-n/6, -n/6], -7^7/6^6) for n >= 36. - Peter Luschny, Sep 19 2014

Extensions

Additional comments from Yong Kong (ykong(AT)curagen.com), Dec 16 2000

A005708 a(n) = a(n-1) + a(n-6), with a(i) = 1 for i = 0..5.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 9, 12, 16, 21, 27, 34, 43, 55, 71, 92, 119, 153, 196, 251, 322, 414, 533, 686, 882, 1133, 1455, 1869, 2402, 3088, 3970, 5103, 6558, 8427, 10829, 13917, 17887, 22990, 29548, 37975, 48804, 62721, 80608, 103598, 133146, 171121, 219925, 282646
Offset: 0

Views

Author

Keywords

Comments

This comment covers a family of sequences which satisfy a recurrence of the form a(n) = a(n-1) + a(n-m), with a(n) = 1 for n = 0...m-1. The generating function is 1/(1-x-x^m). Also a(n) = sum_{i=0..n/m} binomial(n-(m-1)*i, i). This family of binomial summations or recurrences gives the number of ways to cover (without overlapping) a linear lattice of n sites with molecules that are m sites wide. Special case: m=1: A000079; m=4: A003269; m=5: A003520; m=6: A005708; m=7: A005709; m=8: A005710.
For n>=6, a(n-6) = number of compositions of n in which each part is >=6. - Milan Janjic, Jun 28 2010
Number of compositions of n into parts 1 and 6. - Joerg Arndt, Jun 24 2011
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=6, 2*a(n-6) equals the number of 2-colored compositions of n with all parts >=6, such that no adjacent parts have the same color. - Milan Janjic, Nov 27 2011
a(n+5) equals the number of binary words of length n having at least 5 zeros between every two successive ones. - Milan Janjic, Feb 07 2015
Number of tilings of a 6 X n rectangle with 6 X 1 hexominoes. - M. Poyraz Torcuk, Mar 26 2022

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    with(combstruct): SeqSetU := [S, {S=Sequence(U), U=Set(Z, card > 5)}, unlabeled]: seq(count(SeqSetU, size=j), j=6..59); # Zerinvary Lajos, Oct 10 2006
    ZL:=[S, {a = Atom, b = Atom, S = Prod(X,Sequence(Prod(X,b))), X = Sequence(b,card >= 5)}, unlabelled]: seq(combstruct[count](ZL, size=n), n=5..58); # Zerinvary Lajos, Mar 26 2008
    M := Matrix(6, (i,j)-> if j=1 and member(i,[1,6]) then 1 elif (i=j-1) then 1 else 0 fi); a:= n-> (M^(n))[1,1]; seq(a(n), n=0..60); # Alois P. Heinz, Jul 27 2008
  • Mathematica
    LinearRecurrence[{1, 0, 0, 0, 0, 1}, {1, 1, 1, 1, 1, 1}, 80] (* Vladimir Joseph Stephan Orlovsky, Feb 16 2012 *)
  • PARI
    x='x+O('x^66); Vec(x/(1-(x+x^6))) /* Joerg Arndt, Jun 25 2011 */

Formula

G.f.: 1/(1-x-x^6). - Simon Plouffe in his 1992 dissertation
a(n) = term (1,1) in the 6 X 6 matrix [1,1,0,0,0,0; 0,0,1,0,0,0; 0,0,0,1,0,0; 0,0,0,0,1,0; 0,0,0,0,0,1; 1,0,0,0,0,0]^n. - Alois P. Heinz, Jul 27 2008
For positive integers n and k such that k <= n <= 6*k and 5 divides n-k, define c(n,k) = binomial(k,(n-k)/5), and c(n,k)=0, otherwise. Then, for n>= 1, a(n) = sum_{k=1..n} c(n,k). - Milan Janjic, Dec 09 2011
Apparently a(n) = hypergeometric([1/6-n/6, 1/3-n/6, 1/2-n/6, 2/3-n/6, 5/6-n/6, -n/6], [1/5-n/5, 2/5-n/5, 3/5- n/5, 4/5-n/5, -n/5], -6^6/5^5) for n>=25. - Peter Luschny, Sep 19 2014

Extensions

Additional comments from Yong Kong (ykong(AT)curagen.com), Dec 16 2000

A005710 a(n) = a(n-1) + a(n-8), with a(i) = 1 for i = 0..7.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 14, 18, 23, 29, 36, 44, 53, 64, 78, 96, 119, 148, 184, 228, 281, 345, 423, 519, 638, 786, 970, 1198, 1479, 1824, 2247, 2766, 3404, 4190, 5160, 6358, 7837, 9661, 11908, 14674, 18078, 22268, 27428, 33786, 41623
Offset: 0

Views

Author

Keywords

Comments

This comment covers a family of sequences which satisfy a recurrence of the form a(n) = a(n-1) + a(n-m), with a(n) = 1 for n = 0...m-1. The generating function is 1/(1-x-x^m). Also a(n) = Sum_{i=0..n/m} binomial(n-(m-1)*i, i). This family of binomial summations or recurrences gives the number of ways to cover (without overlapping) a linear lattice of n sites with molecules that are m sites wide. Special case: m=1: A000079; m=4: A003269; m=5: A003520; m=6: A005708; m=7: A005709; m=8: A005710.
For n >= 8, a(n-8) = number of compositions of n in which each part is >= 8. - Milan Janjic, Jun 28 2010
Number of compositions of n into parts 1 and 8. - Joerg Arndt, Jun 24 2011
a(n+7) equals the number of binary words of length n having at least 7 zeros between every two successive ones. - Milan Janjic, Feb 09 2015

References

  • P. Chinn and S. Heubach, (1, k)-compositions, Congr. Numer. 164 (2003), 183-194.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    A005710:=-1/(-1+z+z**8); # Simon Plouffe in his 1992 dissertation.
    ZL:=[S, {a = Atom, b = Atom, S = Prod(X,Sequence(Prod(X,b))), X = Sequence(b,card >= 7)}, unlabelled]: seq(combstruct[count](ZL, size=n), n=7..62); # Zerinvary Lajos, Mar 26 2008
    M := Matrix(8, (i,j)-> if j=1 and member(i,[1,8]) then 1 elif (i=j-1) then 1 else 0 fi); a := n -> (M^(n))[1,1]; seq(a(n), n=0..55); # Alois P. Heinz, Jul 27 2008
  • Mathematica
    LinearRecurrence[{1, 0, 0, 0, 0, 0, 0, 1}, {1, 1, 1, 1, 1, 1, 1, 1}, 80] (* Vladimir Joseph Stephan Orlovsky, Feb 16 2012 *)
    CoefficientList[Series[1/(1-x-x^8),{x,0,60}],x] (* Harvey P. Dale, Jun 14 2016 *)
  • PARI
    x='x+O('x^66); Vec(x/(1-(x+x^8))) /* Joerg Arndt, Jun 25 2011 */

Formula

G.f.: 1/(1-x-x^8).
For positive integers n and k such that k <= n <= 8*k, and 7 divides n-k, define c(n,k) = binomial(k,(n-k)/7), and c(n,k) = 0, otherwise. Then, for n >= 1, a(n-1) = Sum_{k=1..n} c(n,k). - Milan Janjic, Dec 09 2011
Apparently a(n) = hypergeometric([1/8-n/8, 1/4-n/8, 3/8-n/8, 1/2-n/8, 5/8-n/8, 3/4-n/8, 7/8-n/8, -n/8], [1/7-n/7, 2/7-n/7, 3/7-n/7, 4/7-n/7, 5/7-n/7, 6/7-n/7, -n/7], -8^8/7^7) for n >= 49. - Peter Luschny, Sep 19 2014

Extensions

Additional comments from Yong Kong (ykong(AT)curagen.com), Dec 16 2000

A001609 a(1) = a(2) = 1, a(3) = 4; thereafter a(n) = a(n-1) + a(n-3).

Original entry on oeis.org

1, 1, 4, 5, 6, 10, 15, 21, 31, 46, 67, 98, 144, 211, 309, 453, 664, 973, 1426, 2090, 3063, 4489, 6579, 9642, 14131, 20710, 30352, 44483, 65193, 95545, 140028, 205221, 300766, 440794, 646015, 946781, 1387575, 2033590, 2980371, 4367946, 6401536, 9381907
Offset: 1

Views

Author

Keywords

Comments

This comment covers a family of sequences which satisfy a recurrence of the form a(n) = a(n-1) + a(n-m), with a(n) = 1 for n = 1...m-1, a(m) = m + 1. The generating function is (x + m*x^m)/(1 - x - x^m). Also a(n) = 1 + n*Sum_{i=1..n/m} binomial(n-1-(m-1)*i, i-1)/i. This gives the number of ways to cover (without overlapping) a ring lattice (or necklace) of n sites with molecules that are m sites wide. Special cases: m=2: A000204, m=3: A001609, m=4: A014097, m=5: A058368, m=6: A058367, m=7: A058366, m=8: A058365, m=9: A058364.
The sequence defined by {a(n) - 1} plays a role for the computation of A065414, A146486, A146487, and A146488 equivalent to the role of A001610 for A005596, A146482, A146483 and A146484, see the variable a_{2,n} in arXiv:0903.2514. - R. J. Mathar, Mar 28 2009
Except for n = 2, a(n) is the number of digits in n-th term of A049064. This can be derived form the T. Sillke link below. - Jianing Song, Apr 28 2019

Examples

			G.f. = x + x^2 + 4*x^3 + 5*x^4 + 6*x^5 + 10*x^6 + 15*x^7 + 21*x^8 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    I:=[1,1,4]; [n le 3 select I[n] else Self(n-1)+Self(n-3): n in [1..45]]; // Vincenzo Librandi, Jun 28 2015
  • Maple
    A001609:=-(1+3*z**2)/(-1+z+z**3); # Simon Plouffe in his 1992 dissertation
    f:= gfun:-rectoproc({a(n) = a(n-1) + a(n-3), a(1)=1,a(2)=1,a(3)=4},a(n),remember):
    map(f, [$1..100]); # Robert Israel, Jun 29 2015
  • Mathematica
    Table[Tr[MatrixPower[{{0, 0, 1}, {1, 0, 0}, {0, 1, 1}}, n]], {n, 1, 60}] (* Artur Jasinski, Jan 10 2007 *)
    Table[ HypergeometricPFQ[{1/3 - n/3, 2/3 - n/3, -(n/3)}, {1/2 - n/2, 1 - n/2}, -(27/4)], {n, 20}] (* Alexander R. Povolotsky, Nov 21 2008 *)
    a[1] = a[2] = 1; a[3] = 4; m = 3; a[n_] := 1 + n*Sum [Binomial [n - 1 - (m - 1)*i, i - 1]/i, {i, n/m}] A001609 = Table[a[n], {n, 100}] (* Zak Seidov, Nov 21 2008 *)
    LinearRecurrence[{1, 0, 1}, {1, 1, 4}, 50] (* Vincenzo Librandi, Jun 28 2015 *)
  • PARI
    {a(n) = if( n<1, n=-n; polcoeff( (3 + x^2) / (1 + x^2 - x^3) + x * O(x^n), n), polcoeff( x * (1 + 3*x^2) / (1 - x - x^3) + x * O(x^n), n))}; /* Michael Somos, Aug 15 2016 */
    

Formula

G.f.: x*(1 + 3*x^2)/(1 - x - x^3).
a(n) = trace of successive powers of matrix ({{0,0,1},{1,0,0},{0,1,1}})^n. - Artur Jasinski, Jan 10 2007
a(n) = A000930(n) + 3*A000930(n-2). - R. J. Mathar, Nov 16 2007
Logarithmic derivative of Narayana's cows sequence A000930. - Paul D. Hanna, Oct 28 2012
a(n) = w1^n + w2^n + w3^n, where w1,w2,w3 are the roots of the cubic: (-1 - x^2 + x^3), see A092526. - Gerry Martens, Jun 27 2015

Extensions

Additional comments from Yong Kong (ykong(AT)curagen.com), Dec 16 2000
More terms from Michael Somos, Oct 03 2002
Deleted certain dangerous or potentially dangerous links. - N. J. A. Sloane, Jan 30 2021

A220122 Number A(n,k) of tilings of a k X n rectangle using integer-sided rectangular tiles of area k; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 2, 5, 1, 1, 1, 1, 1, 3, 3, 8, 1, 1, 1, 1, 2, 1, 9, 4, 13, 1, 1, 1, 1, 1, 4, 1, 16, 6, 21, 1, 1, 1, 1, 2, 1, 7, 2, 35, 9, 34, 1, 1, 1, 1, 1, 3, 1, 13, 3, 65, 13, 55, 1, 1, 1, 1, 2, 2, 9, 1, 46, 4, 143, 19, 89, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Dec 05 2012

Keywords

Comments

Row n gives: 1 followed by period A003418(n): (1, A000045(n+1), ...) repeated; offset 0.

Examples

			A(4,4) = 9, because there are 9 tilings of a 4 X 4 rectangle using integer-sided rectangular tiles of area 4:
._._._._.  ._______.  .___.___.  ._.___._.  ._______.
| | | | |  |_______|  |   |   |  | |   | |  |_______|
| | | | |  |_______|  |___|___|  | |___| |  |   |   |
| | | | |  |_______|  |   |   |  | |   | |  |___|___|
|_|_|_|_|  |_______|  |___|___|  |_|___|_|  |_______|
._._.___.  ._______.  .___._._.  .___.___.
| | |   |  |_______|  |   | | |  |   |   |
| | |___|  |_______|  |___| | |  |___|___|
| | |   |  |   |   |  |   | | |  |_______|
|_|_|___|  |___|___|  |___|_|_|  |_______|
Square array A(n,k) begins:
1, 1,  1,  1,   1, 1,    1, 1,    1,  1,   1, ...
1, 1,  1,  1,   1, 1,    1, 1,    1,  1,   1, ...
1, 1,  2,  1,   2, 1,    2, 1,    2,  1,   2, ...
1, 1,  3,  2,   3, 1,    4, 1,    3,  2,   3, ...
1, 1,  5,  3,   9, 1,    7, 1,    9,  3,   5, ...
1, 1,  8,  4,  16, 2,   13, 1,   16,  4,   9, ...
1, 1, 13,  6,  35, 3,   46, 1,   35,  6,  15, ...
1, 1, 21,  9,  65, 4,   88, 2,   65,  9,  26, ...
1, 1, 34, 13, 143, 5,  209, 3,  250, 13,  44, ...
1, 1, 55, 19, 281, 6,  473, 4,  495, 37,  75, ...
1, 1, 89, 28, 590, 8, 1002, 5, 1209, 64, 254, ...
		

Crossrefs

Columns k=0+1, 2-11, 13 give: A000012, A000045(n+1), A000930, A220123, A003520, A220124, A005709, A220125, A220126, A220127, A017905(n+11), A017907(n+13).
Main diagonal gives: A182106.

Programs

  • Maple
    b:= proc(n, l) option remember; local i, k, m, s, t;
          if max(l[])>n then 0 elif n=0 or l=[] then 1
        elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l))
        else for k do if l[k]=0 then break fi od; s, m:=0, nops(l);
             for i from k to m while l[i]=0 do if irem(m, 1+i-k, 'q')=0
               and q<=n then s:= s+ b(n, [l[j]$j=1..k-1, q$j=k..i,
               l[j]$j=i+1..m]) fi od; s
          fi
        end:
    A:= (n, k)-> b(n, [0$k]):
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    b[n_, l_] := b[n, l] = Module[{i, k, m, s, t}, Which[Max[l] > n, 0, n == 0 || l == {}, 1, Min[l] > 0, t = Min[l]; b[n-t, l-t], True, k = Position[l, 0, 1][[1, 1]]; {s, m} = {0, Length[l]}; For[ i = k , i <= m && l[[i]] == 0, i++, If[Mod[m, 1+i-k ] == 0 && (q = Quotient[m, 1+i-k]) <= n, s = s+b[n, Join[ l[[1 ;; k-1]], Array[q &, i-k+1], l[[i+1 ;; m]] ]]]]; s]]; a[n_, k_] := b[n, Array[0&, k]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Dec 19 2013, translated from Maple *)

Formula

For prime p column p has g.f.: 1/(1-x-x^p) or a_p(n) = Sum_{j=0..floor(n/p)} C(n-(p-1)*j,j).

A376033 Number A(n,k) of binary words of length n avoiding distance (i+1) between "1" digits if the i-th bit is set in the binary representation of k; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 2, 1, 2, 4, 1, 2, 3, 8, 1, 2, 4, 5, 16, 1, 2, 3, 6, 8, 32, 1, 2, 4, 4, 9, 13, 64, 1, 2, 3, 8, 6, 15, 21, 128, 1, 2, 4, 5, 12, 9, 25, 34, 256, 1, 2, 3, 6, 7, 18, 13, 40, 55, 512, 1, 2, 4, 4, 8, 11, 27, 19, 64, 89, 1024, 1, 2, 3, 8, 5, 11, 16, 45, 28, 104, 144, 2048
Offset: 0

Views

Author

Alois P. Heinz, Sep 09 2024

Keywords

Comments

Also the number of subsets of [n] avoiding distance (i+1) between elements if the i-th bit is set in the binary representation of k. A(6,3) = 13: {}, {1}, {2}, {3}, {4}, {5}, {6}, {1,4}, {1,5}, {1,6}, {2,5}, {2,6}, {3,6}.
Each column sequence satisfies a linear recurrence with constant coefficients.
The sequence of row n is periodic with period A011782(n) = ceiling(2^(n-1)).

Examples

			A(6,6) = 17: 000000, 000001, 000010, 000011, 000100, 000110, 001000, 001100, 010000, 010001, 011000, 100000, 100001, 100010, 100011, 110000, 110001 because 6 = 110_2 and no two "1" digits have distance 2 or 3.
A(6,7) = 10: 000000, 000001, 000010, 000100, 001000, 010000, 010001, 100000, 100001, 100010.
A(7,7) = 14: 0000000, 0000001, 0000010, 0000100, 0001000, 0010000, 0010001, 0100000, 0100001, 0100010, 1000000, 1000001, 1000010, 1000100.
Square array A(n,k) begins:
     1,  1,   1,  1,   1,  1,  1,  1,   1,  1, ...
     2,  2,   2,  2,   2,  2,  2,  2,   2,  2, ...
     4,  3,   4,  3,   4,  3,  4,  3,   4,  3, ...
     8,  5,   6,  4,   8,  5,  6,  4,   8,  5, ...
    16,  8,   9,  6,  12,  7,  8,  5,  16,  8, ...
    32, 13,  15,  9,  18, 11, 11,  7,  24, 11, ...
    64, 21,  25, 13,  27, 16, 17, 10,  36, 17, ...
   128, 34,  40, 19,  45, 25, 27, 14,  54, 25, ...
   256, 55,  64, 28,  75, 37, 41, 19,  81, 37, ...
   512, 89, 104, 41, 125, 57, 60, 26, 135, 57, ...
		

Crossrefs

Columns k=0-20 give: A000079, A000045(n+2), A006498(n+2), A000930(n+2), A006500, A130137, A079972(n+3), A003269(n+4), A031923(n+1), A263710(n+1), A224809(n+4), A317669(n+4), A351873, A351874, A121832(n+4), A003520(n+4), A208742, A374737, A375977, A375980, A375978.
Rows n=0-2 give: A000012, A007395(k+1), A010702(k+1).
Main diagonal gives A376091.
A(n,2^k-1) gives A141539.
A(2^n-1,2^n-1) gives A376697.
A(n,2^k) gives A209435.

Programs

  • Maple
    h:= proc(n) option remember; `if`(n=0, 1, 2^(1+ilog2(n))) end:
    b:= proc(n, k, t) option remember; `if`(n=0, 1, add(`if`(j=1 and
          Bits[And](t, k)>0, 0, b(n-1, k, irem(2*t+j, h(k)))), j=0..1))
        end:
    A:= (n, k)-> b(n, k, 0):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • PARI
    step(v,b)={vector(#v, i, my(j=(i-1)>>1); if(bittest(i-1,0), if(bitand(b,j)==0, v[1+j], 0), v[1+j] + v[1+#v/2+j]));}
    col(n,k)={my(v=vector(2^(1+logint(k,2))), r=vector(1+n)); v[1]=r[1]=1; for(i=1, n, v=step(v,k); r[1+i]=vecsum(v)); r}
    A(n,k)=if(k==0, 2^n, col(n,k)[n+1]) \\ Andrew Howroyd, Oct 03 2024

Formula

A(n,k) = A(n,k+ceiling(2^(n-1))).
A(n,ceiling(2^(n-1))-1) = n+1.
A(n,ceiling(2^(n-2))) = ceiling(3*2^(n-2)) = A098011(n+2).
Showing 1-10 of 55 results. Next