A134864 Wythoff BBB numbers.
13, 34, 47, 68, 89, 102, 123, 136, 157, 178, 191, 212, 233, 246, 267, 280, 301, 322, 335, 356, 369, 390, 411, 424, 445, 466, 479, 500, 513, 534, 555, 568, 589, 610, 623, 644, 657, 678, 699, 712, 733, 746, 767, 788, 801, 822, 843, 856, 877, 890, 911, 932, 945
Offset: 1
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..5000
- Clark Kimberling, Complementary equations and Wythoff Sequences, Journal of Integer Sequences 11 (2008), Article 08.3.3.
Crossrefs
Programs
-
Maple
a:=n->floor(n*((1+sqrt(5))/2)^2): [a(a(a(n)))$n=1..55]; # Muniru A Asiru, Nov 24 2018
-
Mathematica
Nest[Quotient[#(3+Sqrt@5),2]&,#,3]&/@Range@100 (* Federico Provvedi, Nov 24 2018 *) b[n_]:=Floor[n GoldenRatio^2]; a[n_]:=b[b[b[n]]]; Array[a, 60] (* Vincenzo Librandi, Nov 24 2018 *)
-
Python
from sympy import floor from mpmath import phi def B(n): return floor(n*phi**2) def a(n): return B(B(B(n))) # Indranil Ghosh, Jun 10 2017
-
Python
from math import isqrt def A134864(n): return (m:=5*n)+(((n+isqrt(n*m))&-2)<<2) # Chai Wah Wu, Aug 10 2022
Formula
a(n) = B(B(B(n))), n>=1, with B=A001950, the upper Wythoff sequence.
Comments