cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134864 Wythoff BBB numbers.

Original entry on oeis.org

13, 34, 47, 68, 89, 102, 123, 136, 157, 178, 191, 212, 233, 246, 267, 280, 301, 322, 335, 356, 369, 390, 411, 424, 445, 466, 479, 500, 513, 534, 555, 568, 589, 610, 623, 644, 657, 678, 699, 712, 733, 746, 767, 788, 801, 822, 843, 856, 877, 890, 911, 932, 945
Offset: 1

Views

Author

Clark Kimberling, Nov 14 2007

Keywords

Comments

The lower and upper Wythoff sequences, A and B, satisfy the complementary equation BBB = 3A+5B.
The asymptotic density of this sequence is 1/phi^6 = A094214^6 = 0.05572809... . - Amiram Eldar, Mar 24 2025

Crossrefs

Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864. The eight triples AAA, AAB, ..., BBB are A134859, A134860, A035337, A134862, A134861, A134863, A035338, A134864, resp.

Programs

  • Maple
    a:=n->floor(n*((1+sqrt(5))/2)^2): [a(a(a(n)))$n=1..55]; # Muniru A Asiru, Nov 24 2018
  • Mathematica
    Nest[Quotient[#(3+Sqrt@5),2]&,#,3]&/@Range@100 (* Federico Provvedi, Nov 24 2018 *)
    b[n_]:=Floor[n GoldenRatio^2]; a[n_]:=b[b[b[n]]]; Array[a, 60] (* Vincenzo Librandi, Nov 24 2018 *)
  • Python
    from sympy import floor
    from mpmath import phi
    def B(n): return floor(n*phi**2)
    def a(n): return B(B(B(n))) # Indranil Ghosh, Jun 10 2017
    
  • Python
    from math import isqrt
    def A134864(n): return (m:=5*n)+(((n+isqrt(n*m))&-2)<<2) # Chai Wah Wu, Aug 10 2022

Formula

a(n) = B(B(B(n))), n>=1, with B=A001950, the upper Wythoff sequence.