cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A080076 Proth primes: primes of the form k*2^m + 1 with odd k < 2^m, m >= 1.

Original entry on oeis.org

3, 5, 13, 17, 41, 97, 113, 193, 241, 257, 353, 449, 577, 641, 673, 769, 929, 1153, 1217, 1409, 1601, 2113, 2689, 2753, 3137, 3329, 3457, 4481, 4993, 6529, 7297, 7681, 7937, 9473, 9601, 9857, 10369, 10753, 11393, 11777, 12161, 12289, 13313
Offset: 1

Views

Author

Eric W. Weisstein, Jan 24 2003

Keywords

Comments

Named after the French farmer and self-taught mathematician François Proth (1852-1879). - Amiram Eldar, Jun 05 2021

Crossrefs

Cf. A080075.
Cf. A134876 (number of Proth primes), A214120, A239234.
Cf. A248972.

Programs

  • Maple
    N:= 20000: # to get all terms <= N
    S:= select(isprime, {seq(seq(k*2^m+1, k = 1 .. min(2^m, (N-1)/2^m), 2), m=1..ilog2(N-1))}):
    sort(convert(S,list)); # Robert Israel, Feb 02 2016
  • Mathematica
    r[p_, n_] := Reduce[p == (2*m + 1)*2^n + 1 && 2^n > 2*m + 1 && n > 0 && m >= 0, {a, m}, Integers]; r[p_] := Catch[ Do[ If[ r[p, n] =!= False, Throw[True]], {n, 1, Floor[Log[2, p]]}]]; A080076 = Reap[ Do[ p = Prime[k]; If[ r[p] === True, Sow[p]], {k, 1, 2000}]][[2, 1]] (* Jean-François Alcover, Apr 06 2012 *)
    nn = 13; Union[Flatten[Table[Select[1 + 2^n Range[1, 2^Min[n, nn - n + 1], 2], # < 2^(nn + 1) && PrimeQ[#] &], {n, nn}]]] (* T. D. Noe, Apr 06 2012 *)
  • PARI
    is_A080076(N)=isproth(N)&&isprime(N) \\ see A080075 for isproth(). - M. F. Hasler, Oct 18 2014
    next_A080076(N)={until(isprime(N=next_A080075(N)),);N}
    A080076_first(N)=vector(N,i,N=if(i>1,next_A080076(N),3)) \\ M. F. Hasler, Jul 07 2022, following a suggestion from Bill McEachen

Formula

Conjecture: a(n) ~ (n log n)^2 / 2. - Thomas Ordowski, Oct 19 2014
Sum_{n>=1} 1/a(n) is in the interval (0.7473924793, 0.7473924795) (Borsos et al., 2022). - Amiram Eldar, Jan 29 2022

A331539 a(n) gives the number of primes of form (2*n+1)*2^m + 1 where m satisfies 2^m <= 2*n+1.

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 2, 1, 0, 2, 1, 2, 2, 2, 0, 1, 2, 2, 4, 1, 1, 1, 0, 1, 2, 2, 1, 2, 1, 1, 3, 3, 2, 2, 2, 2, 4, 1, 1, 3, 2, 2, 2, 1, 0, 3, 3, 2, 4, 1, 0, 3, 1, 1, 2, 2, 1, 3, 2, 0, 1, 2, 1, 2, 2, 2, 4, 1, 1, 4, 0, 1, 0, 2, 1, 2, 2, 0, 2, 2, 3, 5, 1, 1, 0, 1
Offset: 0

Views

Author

Jeppe Stig Nielsen, Jan 19 2020

Keywords

Comments

For each index n, let k = 2*n+1. Then a(n) gives the number of primes of form k*2^m + 1 that are NOT considered Proth primes (A080076) because their m are too small.
In the edge case n=0, so k=1, we count 1*2^0 + 1 = 2 as a non-Proth prime.

Examples

			For n=10, we consider 21*2^m + 1, where m runs from 0 to 4 (the next value m=5 would make 2^m exceed 21). The number of cases where 21*2^m + 1 is prime, is 2, namely m=1 (prime 43) and m=4 (prime 337). So 2 primes means a(10)=2. Compare with the start of A032360, all k=21 primes.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[Boole @ PrimeQ[(2n+1)*2^m + 1], {m, 0, Log2[2n+1]}]; Array[a, 100, 0] (* Amiram Eldar, Jan 20 2020 *)
  • PARI
    a(n) = my(k=2*n+1);sum(m=0,logint(k,2),ispseudoprime(k<
    				

A331540 Number of primes of the form k*2^n + 1 with k < 2^n.

Original entry on oeis.org

1, 2, 2, 5, 10, 16, 31, 47, 88, 149, 290, 536, 952, 1769, 3280, 6186, 11638, 21901, 41488, 78543, 149662, 284735, 543155, 1040577, 1994339, 3834731, 7373228, 14206331, 27405523, 52941914, 102381148
Offset: 1

Views

Author

Jeppe Stig Nielsen, Jan 19 2020

Keywords

Comments

Both even and odd k are counted. Variant of A134876.

Crossrefs

Cf. A134876.

Programs

  • PARI
    a(n) = sum(k=1,2^n-1,ispseudoprime(k<
    				
Showing 1-3 of 3 results.