cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A035053 Number of connected graphs on n unlabeled nodes where every block is a complete graph.

Original entry on oeis.org

1, 1, 1, 2, 4, 9, 22, 59, 165, 496, 1540, 4960, 16390, 55408, 190572, 665699, 2354932, 8424025, 30424768, 110823984, 406734060, 1502876903, 5586976572, 20884546416, 78460794158, 296124542120, 1122346648913, 4270387848473
Offset: 0

Views

Author

Christian G. Bower, Oct 15 1998

Keywords

Comments

Equivalently, this is the number of "hypertrees" on n unlabeled nodes, i.e., connected hypergraphs that have no cycles, assuming that each edge contains at least two vertices. - Don Knuth, Jan 26 2008. See A134955 for hyperforests.
Graphs where every block is a complete graph are also called block graphs or clique tree. They can be characterized as induced-diamond-free chordal graphs. - Falk Hüffner, Jul 25 2019

Examples

			From _Gus Wiseman_, May 20 2018: (Start)
Non-isomorphic representatives of the a(5) = 9 hypertrees are the following:
  {{1,2,3,4,5}}
  {{1,5},{2,3,4,5}}
  {{1,2,5},{3,4,5}}
  {{1,2},{2,5},{3,4,5}}
  {{1,4},{2,5},{3,4,5}}
  {{1,5},{2,5},{3,4,5}}
  {{1,3},{2,4},{3,5},{4,5}}
  {{1,4},{2,5},{3,5},{4,5}}
  {{1,5},{2,5},{3,5},{4,5}}
(End)
		

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 71, (3.4.14).

Crossrefs

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; `if`(n=0,1, add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n) end end: b:= etr(B): c:= etr(b): B:= n-> if n=0 then 0 else c(n-1) fi: C:= etr(B): a:= n-> B(n)+C(n) -add(B(k)*C(n-k), k=0..n): seq(a(n), n=0..30); # Alois P. Heinz, Sep 09 2008
  • Mathematica
    ClearAll[etr, b, a]; etr[p_] := etr[p] = Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[ Sum[ d*p[d], {d, Divisors[j]}]*b[n-j], {j, 1, n}]/n]; b]; b[0]=0; b[n_] := b[n] = etr[etr[b]][n-1]; a[n_] := b[n] + etr[b][n] - Sum[b[k]*etr[b][n-k], {k, 0, n}]; Table[ a[n], {n, 0, 27}] (* Jean-François Alcover, Oct 09 2012, after Alois P. Heinz *)
  • PARI
    \\ here b(n) is A007563 as vector
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    b(n)={my(v=[1]);for(i=2, n, v=concat([1], EulerT(EulerT(v)))); v}
    seq(n)={my(u=b(n)); Vec(1 + x*Ser(EulerT(u))*(1-x*Ser(u)))} \\ Andrew Howroyd, May 22 2018

Formula

G.f.: A(x)=1+(C(x)-1)*(1-B(x)). B: G.f. for A007563. C: G.f. for A035052.
a(n) ~ c * d^n / n^(5/2), where d = 4.189610958393826965527036454524... (see A245566), c = 0.245899549044224207821149415964395... . - Vaclav Kotesovec, Jul 26 2014
a(n) = A304937(n) - A304937(n-1) for n>1, a(n) = 1 for n<2. - Gus Wiseman, May 22 2018

A134957 Number of hyperforests with n unlabeled vertices: analog of A134955 when edges of size 1 are allowed (with no two equal edges).

Original entry on oeis.org

1, 2, 6, 20, 75, 310, 1422, 7094, 37877, 213610, 1256422, 7641700, 47735075, 304766742, 1981348605, 13079643892, 87480944764, 591771554768, 4042991170169, 27864757592632, 193549452132550, 1353816898675732, 9529263306483357, 67457934248821368, 480019516988969011
Offset: 0

Views

Author

Don Knuth, Jan 26 2008

Keywords

Examples

			From _Gus Wiseman_, May 20 2018: (Start)
Non-isomorphic representatives of the a(3) = 20 hyperforests are the following:
  {}
  {{1}}
  {{1,2}}
  {{1,2,3}}
  {{1},{2}}
  {{1},{2,3}}
  {{2},{1,2}}
  {{3},{1,2,3}}
  {{1,3},{2,3}}
  {{1},{2},{3}}
  {{1},{2},{1,2}}
  {{1},{3},{2,3}}
  {{2},{3},{1,2,3}}
  {{2},{1,3},{2,3}}
  {{3},{1,3},{2,3}}
  {{1,2},{1,3},{2,3}}
  {{1},{2},{3},{2,3}}
  {{1},{2},{3},{1,2,3}}
  {{1},{2},{1,3},{2,3}}
  {{2},{3},{1,3},{2,3}}
  {{3},{1,2},{1,3},{2,3}}
  {{1},{2},{3},{1,3},{2,3}}
  {{2},{3},{1,2},{1,3},{2,3}}
  {{1},{2},{3},{1,2},{1,3},{2,3}}
(End)
		

Crossrefs

Programs

  • Mathematica
    etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n - j], {j, 1, n}]/n]; b];
    EulerT[v_List] := With[{q = etr[v[[#]]&]}, q /@ Range[Length[v]]];
    ser[v_] := Sum[v[[i]] x^(i - 1), {i, 1, Length[v]}] + O[x]^Length[v];
    b[n_] := Module[{v = {1}}, For[i = 2, i <= n, i++, v = Join[{1}, EulerT[EulerT[2 v]]]]; v];
    seq[n_] := Module[{u = 2 b[n]}, Join[{1}, EulerT[ser[EulerT[u]]*(1 - x*ser[u]) + O[x]^n // CoefficientList[#, x]&]]];
    seq[24] (* Jean-François Alcover, Feb 10 2020, after Andrew Howroyd *)
  • PARI
    \\ here b(n) is A318494 as vector
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    b(n)={my(v=[1]); for(i=2, n, v=concat([1], EulerT(EulerT(2*v)))); v}
    seq(n)={my(u=2*b(n)); concat([1], EulerT(Vec(Ser(EulerT(u))*(1-x*Ser(u)))))} \\ Andrew Howroyd, Aug 27 2018

Formula

Euler transform of A134959. - Gus Wiseman, May 20 2018

Extensions

Terms a(7) and beyond from Andrew Howroyd, Aug 27 2018

A304386 Number of unlabeled hypertrees (connected antichains with no cycles) spanning up to n vertices and allowing singleton edges.

Original entry on oeis.org

1, 2, 5, 15, 50, 200, 907, 4607, 25077, 144337, 863678, 5329994, 33697112, 217317986, 1424880997, 9474795661, 63769947778, 433751273356, 2977769238994, 20611559781972, 143720352656500, 1008765712435162, 7122806053951140, 50566532826530292, 360761703055959592
Offset: 0

Views

Author

Gus Wiseman, May 21 2018

Keywords

Examples

			Non-isomorphic representatives of the a(3) = 15 hypertrees are the following:
  {}
  {{1}}
  {{1,2}}
  {{1,2,3}}
  {{2},{1,2}}
  {{1,3},{2,3}}
  {{3},{1,2,3}}
  {{1},{2},{1,2}}
  {{3},{1,2},{2,3}}
  {{3},{1,3},{2,3}}
  {{2},{3},{1,2,3}}
  {{1},{2},{3},{1,2,3}}
  {{2},{3},{1,2},{1,3}}
  {{2},{3},{1,3},{2,3}}
  {{1},{2},{3},{1,3},{2,3}}
		

Crossrefs

Programs

  • PARI
    \\ here b(n) is A318494 as vector
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    b(n)={my(v=[1]); for(i=2, n, v=concat([1], EulerT(EulerT(2*v)))); v}
    seq(n)={my(u=2*b(n)); Vec(1 + x*Ser(EulerT(u))*(1-x*Ser(u))/(1-x))} \\ Andrew Howroyd, Aug 27 2018

Formula

Partial sums of b(1) = 1, b(n) = A134959(n) otherwise.

Extensions

Terms a(7) and beyond from Andrew Howroyd, Aug 27 2018

A304918 Number of labeled antichain hyperforests spanning a subset of {1,...,n}.

Original entry on oeis.org

1, 2, 5, 18, 104, 943, 12133, 203038, 4177755, 101922814, 2874725600, 92009680557, 3294276613933, 130446181101044, 5660055256165565, 267044522107706072, 13611243187516647324, 745329728016955480687, 43636132793651444511809, 2719977663069107176768790
Offset: 0

Views

Author

Gus Wiseman, May 21 2018

Keywords

Examples

			The a(3) = 18 hyperforests are the following:
{{1,2,3}}      {{2,3}}    {{1,3}}    {{1,2}}    {{3}}   {{2}}   {{1}}   {}
{{1,3},{2,3}}  {{2},{3}}  {{1},{3}}  {{1},{2}}
{{1,2},{2,3}}
{{1,2},{1,3}}
{{3},{1,2}}
{{2},{1,3}}
{{1},{2,3}}
{{1},{2},{3}}
		

Crossrefs

Formula

Binomial transform of A134954.

A318494 Number of rooted simple connected graphs on n unlabeled nodes where every block is a complete graph with nonroot nodes of two colors.

Original entry on oeis.org

1, 2, 10, 50, 285, 1696, 10647, 68842, 456922, 3091546, 21252396, 147992264, 1041779912, 7401119718, 52996414666, 382095695324, 2771458821772, 20209364313202, 148064910503435, 1089415620952020, 8046283404651000, 59635009544475814, 443380411766040664
Offset: 1

Views

Author

Andrew Howroyd, Aug 27 2018

Keywords

Comments

Number of rooted spanning hypertrees on n unlabeled nodes with edges of size 1 allowed.
Shifts left when Euler transform is applied twice to double this sequence.

Examples

			a(3) = 10 because there are three possible rooted graphs which are illustrated below and these can be colored up to isomorphism in 3, 3 and 4 ways respectively.
  o---o   o   o   o---o
   \ /     \ /     \
    *       *       *
		

Crossrefs

Programs

  • Maple
    b:= ((proc(p) local b; b:= proc(n) option remember; `if`(n=0, 1,
            add(add(d*p(d), d=numtheory[divisors](j))*b(n-j), j=1..n)/n)
          end end)@@2)(2*a):
    a:= n-> b(n-1):
    seq(a(n), n=1..25);  # Alois P. Heinz, Aug 27 2018
  • Mathematica
    etr[p_] := etr[p] = Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d p[d], {d, Divisors[j]}] b[n-j], {j, 1, n}]/n]; b];
    a[n_] := b[n-1];
    b = etr@etr@(2a[#]&);
    Array[a, 25] (* Jean-François Alcover, Nov 01 2020 *)
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={my(v=[1]); for(i=2, n, v=concat([1], EulerT(EulerT(2*v)))); v}

A304968 Number of labeled hypertrees spanning some subset of {1,...,n}, with singleton edges allowed.

Original entry on oeis.org

1, 2, 7, 48, 621, 12638, 351987, 12426060, 531225945, 26674100154, 1538781595999, 100292956964456, 7288903575373509, 584454485844541718, 51256293341752583499, 4880654469385955209092, 501471626403154217825457, 55300894427785157597436786
Offset: 0

Views

Author

Gus Wiseman, May 22 2018

Keywords

Examples

			The a(2) = 7 hypertrees are the following:
{}
{{1}}
{{2}}
{{1,2}}
{{1},{1,2}}
{{2},{1,2}}
{{1},{2},{1,2}}
		

Crossrefs

Programs

  • PARI
    \\ here b(n) is A134958 with b(1)=1.
    b(n)=if(n<2, n>=0, 2^n*sum(i=0, n, stirling(n-1, i, 2)*n^(i-1)));
    a(n)=sum(k=0, n, binomial(n, k)*b(k)); \\ Andrew Howroyd, Aug 27 2018

Formula

Binomial transform of b(1) = 1, b(n) = A134958(n) otherwise.

A304970 Number of unlabeled hypertrees with up to n vertices and without singleton edges.

Original entry on oeis.org

1, 1, 2, 4, 8, 17, 39, 98, 263, 759, 2299, 7259, 23649, 79057, 269629, 935328, 3290260, 11714285, 42139053, 152963037, 559697097, 2062574000, 7649550572, 28534096988, 106994891146, 403119433266, 1525466082179, 5795853930652, 22102635416716, 84579153865570
Offset: 0

Views

Author

Gus Wiseman, May 22 2018

Keywords

Examples

			Non-isomorphic representatives of the a(4) = 8 hypertrees are the following:
{}
{{1,2}}
{{1,2,3}}
{{1,2,3,4}}
{{1,3},{2,3}}
{{1,4},{2,3,4}}
{{1,3},{2,4},{3,4}}
{{1,4},{2,4},{3,4}}
		

Crossrefs

Programs

  • PARI
    \\ here b(n) is A007563 as vector
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    b(n)={my(v=[1]); for(i=2, n, v=concat([1], EulerT(EulerT(v)))); v}
    seq(n)={my(u=b(n)); Vec(1 + (x*Ser(EulerT(u))*(1-x*Ser(u)))/(1-x))} \\ Andrew Howroyd, Aug 27 2018

Formula

Partial sums of A035053 if we assume A035053(1) = 0.
a(n) = A304937(n) + 1 for n > 0.

A304937 Number of unlabeled nonempty hypertrees with up to n vertices and no singleton edges.

Original entry on oeis.org

1, 0, 1, 3, 7, 16, 38, 97, 262, 758, 2298, 7258, 23648, 79056, 269628, 935327, 3290259, 11714284, 42139052, 152963036, 559697096, 2062573999, 7649550571, 28534096987, 106994891145, 403119433265, 1525466082178, 5795853930651, 22102635416715, 84579153865569
Offset: 0

Views

Author

Gus Wiseman, May 21 2018

Keywords

Examples

			Non-isomorphic representatives of the a(5) = 16 hypertrees are the following:
{{1,2}}
{{1,2,3}}
{{1,2,3,4}}
{{1,2,3,4,5}}
{{1,3},{2,3}}
{{1,4},{2,3,4}}
{{1,5},{2,3,4,5}}
{{1,2,5},{3,4,5}}
{{1,2},{2,5},{3,4,5}}
{{1,3},{2,4},{3,4}}
{{1,4},{2,4},{3,4}}
{{1,4},{2,5},{3,4,5}}
{{1,5},{2,5},{3,4,5}}
{{1,3},{2,4},{3,5},{4,5}}
{{1,4},{2,5},{3,5},{4,5}}
{{1,5},{2,5},{3,5},{4,5}}
		

Crossrefs

Programs

  • PARI
    \\ here b(n) is A007563 as vector
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    b(n)={my(v=[1]); for(i=2, n, v=concat([1], EulerT(EulerT(v)))); v}
    seq(n)={my(u=b(n)); Vec(1 + (x*Ser(EulerT(u))*(1-x*Ser(u)) - x)/(1-x))} \\ Andrew Howroyd, Aug 27 2018

Formula

a(n) = a(n-1) + A035053(n) for n > 1, a(n) = 1 - n for n < 2.

A304939 Number of labeled nonempty hypertrees (connected antichains with no cycles) spanning some subset of {1,...,n} without singleton edges.

Original entry on oeis.org

1, 0, 1, 7, 51, 506, 6843, 118581, 2504855, 62370529, 1788082153, 57997339632, 2099638691439, 83922479506503, 3670657248913385, 174387350448735877, 8942472292255441103, 492294103555090048458, 28958704109012732921523
Offset: 0

Views

Author

Gus Wiseman, May 21 2018

Keywords

Examples

			The a(3) = 7 hypertrees are the following:
  {{1,2}}
  {{1,3}}
  {{2,3}}
  {{1,2,3}}
  {{1,2},{1,3}}
  {{1,2},{2,3}}
  {{1,3},{2,3}}
		

Crossrefs

Programs

  • PARI
    \\ here b(n) is A030019 with b(1)=0.
    b(n)=if(n<2, n==0, sum(i=0, n, stirling(n-1, i, 2)*n^(i-1)));
    a(n)=if(n<1, n==0, sum(k=1, n, binomial(n, k)*b(k))); \\ Andrew Howroyd, Aug 27 2018

Formula

a(n) = A305004(n) - 1 for n > 0. - Andrew Howroyd, Aug 27 2018

A305004 Number of labeled hypertrees (connected acyclic antichains) spanning some subset of {1,...,n} without singleton edges.

Original entry on oeis.org

1, 1, 2, 8, 52, 507, 6844, 118582, 2504856, 62370530, 1788082154, 57997339633, 2099638691440, 83922479506504, 3670657248913386, 174387350448735878, 8942472292255441104, 492294103555090048459, 28958704109012732921524
Offset: 0

Views

Author

Gus Wiseman, May 23 2018

Keywords

Examples

			The a(3) = 8 hypertrees:
{}
{{1,2}}
{{1,3}}
{{2,3}}
{{1,2,3}}
{{1,2},{1,3}}
{{1,2},{2,3}}
{{1,3},{2,3}}
		

Crossrefs

Programs

  • PARI
    \\ here b(n) is A030019 with b(1)=0.
    b(n)=if(n<2, n==0, sum(i=0, n, stirling(n-1, i, 2)*n^(i-1)));
    a(n)=sum(k=0, n, binomial(n, k)*b(k)); \\ Andrew Howroyd, Aug 27 2018

Formula

a(n > 0) = A304939(n) + 1.
Binomial transform of A030019 if we assume A030019(1) = 0.
Showing 1-10 of 12 results. Next