A134964 Number of unlabeled n-node simple graphs with at most one cycle in each connected component.
1, 1, 2, 4, 9, 19, 46, 108, 273, 696, 1836, 4896, 13323, 36541, 101323, 282693, 793697, 2237982, 6335978, 17992622, 51235887, 146228734, 418181860, 1197972026, 3437159492, 9875198568, 28407202891, 81807809714, 235831978115, 680478488927, 1965160731704
Offset: 0
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..500
- F. Ruskey, Combinatorial Generation, Eq.(4.27), 2003
- Eric Weisstein's World of Mathematics, Pseudoforest
- Wikipedia, Pseudoforest
Programs
-
Mathematica
Needs["Combinatorica`"]; nn=30;s[n_,k_]:=s[n,k]=a[n+1-k]+If[n<2k,0,s[n-k,k]];a[1]=1;a[n_]:=a[n]=Sum[a[i]s[n-1,i]i,{i,1,n-1}]/(n-1);rt=Table[a[i],{i,1,nn}];cu=Drop[Apply[Plus,Table[Take[CoefficientList[CycleIndex[DihedralGroup[n],s]/.Table[s[j]->Table[Sum[rt[[i]]x^(k*i),{i,1,nn}],{k,1,nn}][[j]],{j,1,nn}],x],nn],{n,3,nn}]],1];t[n_,k_]:=t[n,k]=b[n+1-k]+If[n<2k,0,t[n-k,k]];b[1]=1;b[n_]:=b[n]=Sum[b[i]t[n-1,i]i,{i,1,n-1}]/(n-1);ft=Table[b[i]-Sum[b[j]b[i-j],{j,1,i/2}]+If[OddQ[i],0,b[i/2](b[i/2]+1)/2],{i,1,nn}]; CoefficientList[Series[Product[1/(1-x^i)^(cu[[i]]+ft[[i]]),{i,1,nn-1}],{x,0,nn}],x] (* Geoffrey Critzer, Oct 13 2012, after codes given by Robert A. Russell in A134964 and A000055 *)
Formula
Extensions
Edited by Washington Bomfim, Jun 27 2012
Terms a(29) and beyond from Andrew Howroyd, May 16 2021
Comments