cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A177275 Primes which are a concatenation of some permutation of the first 5 primes.

Original entry on oeis.org

112573, 115237, 115327, 211573, 235117, 257311, 327511, 352711, 357211, 372511, 511237, 511327, 511723, 521137, 521173, 572311, 711523, 725113, 735211, 751123
Offset: 1

Views

Author

Ulrich Krug (leuchtfeuer37(AT)gmx.de), May 06 2010

Keywords

Comments

There are 20 terms in the sequence. Each is a 6-digit prime with sum of digits equal to 19 = A051351(5).
For each of the 20 entries we define the index i via prime(i) = a(n), which yields the following 20 pairs of (i, A007953(i)):
(10668,21), (10892,20), (10901,11), (18940,22), (20845,19) HP,
(22622,14), (28208,20), (30192,15), (30538,19) HP, (31709,20),
(42386,23), (42392,20), (42426,18), (43145,17), (43149,21),
(47000,11), (57421,19) HP, (58426,25), (59175,27), (60315,15)
Where prime(i) is in A033548, this is marked as "HP" for "Honaker Prime".

Examples

			a(1) = 11//2//5//7//3 = 112573 = prime(10668).
a(5) = 2//3//5//11//7 = 235117 = prime(20845).
a(20) = 7//5//11//2//3 = 751123 = prime(60315).
		

Crossrefs

Programs

  • Maple
    catL := proc(L) local a,i,dgs ; a := op(1,L) ; for i from 2 to nops(L) do dgs := max(1, 1+ilog10(op(i,L))) ; a := a*10^dgs+op(i,L) ; end do: a ; end proc:
    A177275 := proc() local pL,a,c ; pL := [seq(ithprime(c),c=1..5)] ; a := {} ; for c in combinat[permute](pL) do p := catL(c) ; if isprime(p) then a := a union {p} ; end if; end do: print(sort(a)) ; end proc:
    A177275() ; # R. J. Mathar, May 09 2010

Extensions

Added keyword:base,full. Removed the variable p. - R. J. Mathar and Zak Seidov, May 09 2010

A167417 Largest prime concatenation of the first n primes, or 0 if no such prime exists.

Original entry on oeis.org

2, 23, 523, 7523, 751123, 75311213, 7523171311, 753217131911, 75323219131117, 0, 753312923219111713, 75373312923192171311, 7541373132923217111319, 754341373132923192171311, 75474341373132923211171319
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Nov 03 2009

Keywords

Comments

a(10) doesn't exist, because the sum of digits of the first 10 primes (2+3+5+7+(1+1)+(1+3)+(1+7)+(1+9)+(2+3)+(2+9)) = 57 is a multiple of 3.

Examples

			The only prime concatenations of the first n primes for n = 1..3 are a(1)=2, a(2)=23, and a(3)=523.
For n=4, the only prime concatenations of 2, 3, 5, and 7 are 2357, 2753, 3257, 3527, 5237, 5273, 7253, 7523; the largest of these is a(4) = 7523.
		

References

  • Richard E. Crandall and Carl Pomerance, Prime Numbers, Springer 2005.
  • Paulo Ribenboim, The New Book of Prime Number Records, Springer 1996.
  • A. Weil, Number theory: an approach through history, Birkhäuser 1984.

Crossrefs

Programs

  • Python
    from sympy import sieve, isprime
    from itertools import permutations
    for n in range(1, 14):
        sieve.extend_to_no(n)
        p = list(map(str, list(sieve._list)))[:n]
        mint = 0
        for i in permutations(p, len(p)):
            t = int(''.join(i))
            if  t > mint and isprime(t):
                mint = t
        print(mint, end = ', ') # Gleb Ivanov, Dec 05 2021

Extensions

Edited by Charles R Greathouse IV, Apr 28 2010
Several terms corrected and a(11)-a(15) from Gleb Ivanov, Dec 05 2021

A167416 Smallest prime concatenation of the first n primes, or 0 if no such prime exists.

Original entry on oeis.org

2, 23, 523, 2357, 112573, 11132357, 1113257317, 111317193257, 11131719223357, 0, 111317192232935317, 11131719223293157373, 1113171922329313377541, 111317192232931337415743, 11131719223293133741474357
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Nov 03 2009

Keywords

Comments

a(10) doesn't exist, because the sum of digits of the first 10 primes (2+3+5+7+(1+1)+(1+3)+(1+7)+(1+9)+(2+3)+(2+9)) = 57 is a multiple of 3.

Examples

			The only prime concatenations of the first n primes for n = 1..3 are a(1)=2, a(2)=23, and a(3)=523.
For n=4, the only prime concatenations of 2, 3, 5, and 7 are 2357, 2753, 3257, 3527, 5237, 5273, 7253, 7523; the smallest of these is a(4) = 2357.
		

References

  • Richard E. Crandall and Carl Pomerance, Prime Numbers, Springer 2005.
  • Paulo Ribenboim, The New Book of Prime Number Records, Springer 1996.
  • A. Weil, Number theory: an approach through history, Birkhäuser 1984.

Crossrefs

Programs

  • Python
    from sympy import sieve, isprime
    from itertools import permutations
    for n in range(1, 20):
        sieve.extend_to_no(n)
        p = list(map(str, list(sieve._list)))[:n]
        mint = 10**1000
        for i in permutations(p, len(p)):
            t = int(''.join(i))
            if  t < mint and isprime(t):
                mint = t
        if mint == 10**1000:
            print(0, end = ', ')
        else:
            print(mint, end = ', ') # Gleb Ivanov, Dec 04 2021

Extensions

Keyword:full added by R. J. Mathar, Nov 11 2009
Edited by Charles R Greathouse IV, Apr 28 2010
Several terms corrected and a(11)-a(15) from Gleb Ivanov, Dec 04 2021

A135134 Emirps that use all of the prime digits 2,3,5,7 exactly once.

Original entry on oeis.org

3257, 3527, 7253, 7523
Offset: 1

Views

Author

Lekraj Beedassy, Feb 12 2008

Keywords

Crossrefs

Showing 1-4 of 4 results.