cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A134966 Primes that use all of the prime digits 2,3,5,7 exactly once.

Original entry on oeis.org

2357, 2753, 3257, 3527, 5237, 5273, 7253, 7523
Offset: 1

Views

Author

Lekraj Beedassy, Feb 04 2008

Keywords

Comments

Permutations of the four prime digits 2, 3, 5, 7 that are primes. - Lekraj Beedassy, May 12 2009

Crossrefs

Programs

  • Mathematica
    Select[FromDigits/@Permutations[{2,3,5,7}],PrimeQ] (* Harvey P. Dale, Jul 04 2013 *)

A175429 Number of primes that are permutations of first n primes.

Original entry on oeis.org

1, 1, 1, 8, 20, 112, 608, 4436, 34843, 0, 4785242
Offset: 1

Views

Author

Zak Seidov, May 10 2010

Keywords

Examples

			a(1)=1: 2; a(2)=1: 23; a(3)=1, 523;
a(4)=8: {2357,2753,3257,3527,5237,5273,7253,7523};
a(5)=20: {112573, 115237,...,735211, 751123}, see A177275;
a(6)=112: {11132357,11132753,...,75231113,75311213}, see links;
a(7)=608: {1113257317,1113321757,...,7523131711,7523171311}, see links;
a(8)= 4436: {111317193257,111317193527,...,753191321117,753217131911}, see links;
a(9)= 34843: {11131719223357,11131719235237,...,75323217191113,75323219131117}
a(10)=0 because sum of digits of first 10 primes (2+3+5+7+(1+1)+(1+3)+(1+7)+(1+9)+(2+3)+(2+9))=57 is multiple of 3.
		

Crossrefs

Cf. A177275.

A167417 Largest prime concatenation of the first n primes, or 0 if no such prime exists.

Original entry on oeis.org

2, 23, 523, 7523, 751123, 75311213, 7523171311, 753217131911, 75323219131117, 0, 753312923219111713, 75373312923192171311, 7541373132923217111319, 754341373132923192171311, 75474341373132923211171319
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Nov 03 2009

Keywords

Comments

a(10) doesn't exist, because the sum of digits of the first 10 primes (2+3+5+7+(1+1)+(1+3)+(1+7)+(1+9)+(2+3)+(2+9)) = 57 is a multiple of 3.

Examples

			The only prime concatenations of the first n primes for n = 1..3 are a(1)=2, a(2)=23, and a(3)=523.
For n=4, the only prime concatenations of 2, 3, 5, and 7 are 2357, 2753, 3257, 3527, 5237, 5273, 7253, 7523; the largest of these is a(4) = 7523.
		

References

  • Richard E. Crandall and Carl Pomerance, Prime Numbers, Springer 2005.
  • Paulo Ribenboim, The New Book of Prime Number Records, Springer 1996.
  • A. Weil, Number theory: an approach through history, Birkhäuser 1984.

Crossrefs

Programs

  • Python
    from sympy import sieve, isprime
    from itertools import permutations
    for n in range(1, 14):
        sieve.extend_to_no(n)
        p = list(map(str, list(sieve._list)))[:n]
        mint = 0
        for i in permutations(p, len(p)):
            t = int(''.join(i))
            if  t > mint and isprime(t):
                mint = t
        print(mint, end = ', ') # Gleb Ivanov, Dec 05 2021

Extensions

Edited by Charles R Greathouse IV, Apr 28 2010
Several terms corrected and a(11)-a(15) from Gleb Ivanov, Dec 05 2021

A167416 Smallest prime concatenation of the first n primes, or 0 if no such prime exists.

Original entry on oeis.org

2, 23, 523, 2357, 112573, 11132357, 1113257317, 111317193257, 11131719223357, 0, 111317192232935317, 11131719223293157373, 1113171922329313377541, 111317192232931337415743, 11131719223293133741474357
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Nov 03 2009

Keywords

Comments

a(10) doesn't exist, because the sum of digits of the first 10 primes (2+3+5+7+(1+1)+(1+3)+(1+7)+(1+9)+(2+3)+(2+9)) = 57 is a multiple of 3.

Examples

			The only prime concatenations of the first n primes for n = 1..3 are a(1)=2, a(2)=23, and a(3)=523.
For n=4, the only prime concatenations of 2, 3, 5, and 7 are 2357, 2753, 3257, 3527, 5237, 5273, 7253, 7523; the smallest of these is a(4) = 2357.
		

References

  • Richard E. Crandall and Carl Pomerance, Prime Numbers, Springer 2005.
  • Paulo Ribenboim, The New Book of Prime Number Records, Springer 1996.
  • A. Weil, Number theory: an approach through history, Birkhäuser 1984.

Crossrefs

Programs

  • Python
    from sympy import sieve, isprime
    from itertools import permutations
    for n in range(1, 20):
        sieve.extend_to_no(n)
        p = list(map(str, list(sieve._list)))[:n]
        mint = 10**1000
        for i in permutations(p, len(p)):
            t = int(''.join(i))
            if  t < mint and isprime(t):
                mint = t
        if mint == 10**1000:
            print(0, end = ', ')
        else:
            print(mint, end = ', ') # Gleb Ivanov, Dec 04 2021

Extensions

Keyword:full added by R. J. Mathar, Nov 11 2009
Edited by Charles R Greathouse IV, Apr 28 2010
Several terms corrected and a(11)-a(15) from Gleb Ivanov, Dec 04 2021
Showing 1-4 of 4 results.