A134980 a(n) = Sum_{k=0..n} binomial(n,k)*n^(n-k)*A000110(k).
1, 2, 10, 77, 799, 10427, 163967, 3017562, 63625324, 1512354975, 40012800675, 1166271373797, 37134022033885, 1282405154139046, 47745103281852282, 1906411492286148245, 81267367663098939459, 3683790958912910588623, 176937226305157687076779
Offset: 0
Links
- Robert Israel, Table of n, a(n) for n = 0..385
- R. Jakimczuk, Successive Derivatives and Integer Sequences, J. Int. Seq. 14 (2011) # 11.7.3.
- Istvan Mezo, The r-Bell numbers, arXiv:0909.4417 [math.CO], 2009-2010.
- I. Mezo, The r-Bell numbers, J. Int. Seq. 14 (2011) # 11.1.1.
Programs
-
Maple
with(combinat): a:= n-> add(binomial(n, k)*n^(n-k)*bell(k), k=0..n): seq(a(n), n=0..20); # Emeric Deutsch, Mar 02 2008 # Alternate: g:= proc(n) local S; S:= series(exp(exp(x)+n*x-1),x,n+1); n!*coeff(S,x,n); end proc: map(g, [$0..30]); # Robert Israel, Sep 29 2017 # third Maple program: b:= proc(n, k) option remember; `if`(n=0, 1, k*b(n-1, k)+ b(n-1, k+1)) end: a:= n-> b(n$2): seq(a(n), n=0..20); # Alois P. Heinz, Aug 04 2021
-
Mathematica
a[n_] := n!*SeriesCoefficient[Exp[Exp[x] + n*x - 1], {x, 0, n}]; Array[a, 19, 0] (* Jean-François Alcover, Sep 28 2017, after Ilya Gutkovskiy *) Join[{1}, Table[Sum[Binomial[n,k]*n^(n-k)*BellB[k], {k,0,n}], {n,1,20}]] (* Vaclav Kotesovec, Jun 09 2020 *)
-
Sage
def A134980(n): return add(binomial(n, k)*n^(n-k)*bell_number(k) for k in (0..n)) [A134980(n) for n in (0..18)] # Peter Luschny, May 05 2013
Formula
a(n) = exp(-1)*Sum_{k>=0} (n+k)^n/k!.
E.g.f.: A(x) = exp(-1)*Sum_{k>=0} (1+k*x)^k/k!.
a(n) = Sum_{k=0..n} Stirling1(n,k)*A000110(n+k). - Vladeta Jovovic, Nov 08 2009
a(n) = n! * [x^n] exp(exp(x) + n*x - 1). - Ilya Gutkovskiy, Sep 26 2017
a(n) ~ exp(exp(1) - 1) * n^n. - Vaclav Kotesovec, Jun 09 2020
Extensions
More terms from Emeric Deutsch, Mar 02 2008
Comments