cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A165457 a(n) = (2*n+1)!*(2*n+3)/3.

Original entry on oeis.org

1, 10, 280, 15120, 1330560, 172972800, 31135104000, 7410154752000, 2252687044608000, 851515702861824000, 391697223316439040000, 215433472824041472000000, 139600890389978873856000000
Offset: 0

Views

Author

Jaume Oliver Lafont, Sep 20 2009

Keywords

Crossrefs

Cf. A135003. [Jaume Oliver Lafont, Oct 03 2009]

Programs

  • GAP
    List([0..12],n->Factorial(2*n+1)*(2*n+3)/3); # Muniru A Asiru, Oct 21 2018
    
  • Magma
    [Factorial(2*n+1)*(2*n+3)/3: n in [0..30]]; // G. C. Greubel, Oct 20 2018
    
  • Maple
    seq(factorial(2*n+1)*(2*n+3)/3,n=0..12); # Muniru A Asiru, Oct 21 2018
  • Mathematica
    Table[(2*n + 1)!*(2*n + 3)/3, {n, 0, 30}] (* G. C. Greubel, Oct 20 2018 *)
  • PARI
    a(n)=(2*n+1)!*(2*n+3)/3
    
  • Python
    import math
    for n in range(0, 12): print(int(math.factorial(2*n+1)*(2*n+3)/3), end=', ') # Stefano Spezia, Oct 21 2018

Formula

a(n) = 2*n*(2*n+3)*a(n-1).
Sum_{k>=0} 1/a(k) = 3/e = A135003.
G.f.: 3F0(1,1,5/2;;4x). - R. J. Mathar, Oct 15 2009
Sum_{k>=0} (-1)^k/a(k) = 3*(sin(1)-cos(1)) = (-3)*A143624. - Amiram Eldar, Apr 12 2021

Extensions

frac keyword removed by Jaume Oliver Lafont, Nov 02 2009

A346963 Decimal expansion of Integral_{x=-1/e..0} LambertW(x)*LambertW(-1,x) dx.

Original entry on oeis.org

2, 1, 6, 5, 7, 7, 7, 7, 0, 4, 3, 6, 0, 0, 7, 2, 7, 7, 3, 5, 9, 0, 2, 4, 9, 2, 0, 0, 6, 0, 7, 3, 8, 3, 3, 1, 6, 9, 8, 7, 3, 5, 5, 8, 2, 2, 5, 5, 3, 5, 5, 6, 9, 3, 2, 7, 2, 3, 3, 1, 4, 4, 1, 6, 9, 4, 0, 9, 9, 6, 2, 2, 2, 7, 2, 2, 3, 6, 8, 0, 9, 8, 4, 8, 3, 0, 3, 8, 5, 9, 2, 2, 4, 8, 5, 2, 1, 1, 1, 1, 5, 7, 5, 4, 3
Offset: 0

Views

Author

Gleb Koloskov, Aug 09 2021

Keywords

Examples

			0.216577770436007277359024920060738331698735582255355693272331441694...
		

Crossrefs

Programs

  • Maple
    evalf(Integrate(LambertW(x)*LambertW(-1, x), x = -exp(-1)..0), 120); # Vaclav Kotesovec, Aug 23 2021
  • Mathematica
    N[Integrate[LambertW[x]*LambertW[-1,x],{x,-1/E,0}],120]
  • PARI
    11*exp(-1)-4+sumpos(n=1,(1/(1+1./n))^n/(n*(n+1)^2))

Formula

Equals Integral_{x=-1/e..0} LambertW(x)*LambertW(-1,x) dx.
Equals (3/e) - 1 + Sum_{n>0} (n^(n-1)/(n+1)^(n+2))*(Gamma(n+2,n+1)/Gamma(n+2)).
Equals (11/e)-4+Sum_{n>0} n^(n-1)/(n+1)^(n+2) = A135011-4+Sum_{n>0} A000169(n)/A007778(n+1).
Showing 1-2 of 2 results.