A135013 Partial sums of A000265.
1, 2, 5, 6, 11, 14, 21, 22, 31, 36, 47, 50, 63, 70, 85, 86, 103, 112, 131, 136, 157, 168, 191, 194, 219, 232, 259, 266, 295, 310, 341, 342, 375, 392, 427, 436, 473, 492, 531, 536, 577, 598, 641, 652, 697, 720, 767, 770, 819, 844, 895, 908, 961, 988, 1043, 1050, 1107, 1136
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- A. Erickson and F. Ruskey, Enumerating maximal tatami mat coverings of square grids with v vertical dominoes, arXiv:1304.0070 [math.CO], 2013.
- R. A. MacLeod, On the Largest Odd Divisor of n, The American Mathematical Monthly, Vol. 75, No. 6 (Jun. - Jul., 1968), pp. 647-648.
Programs
-
Mathematica
Accumulate[Table[Times@@(#[[1]]^#[[2]]&/@Select[FactorInteger[i],#[[1]] != 2&]),{i,90}]] (* Harvey P. Dale, Jun 25 2013 *)
-
PARI
a(n)=sum(k=1,log(n)\log(2)+1,round(n/2^k)^2) \\ Charles R Greathouse IV, Oct 06 2013
Formula
a(n) = Sum_{k>=1} (round(n/2^k))^2. - Alejandro Erickson, Apr 13 2012
a(n) = n^2/3 + O(n) (see MacLeod link). - Michel Marcus, Dec 05 2013
a(j*2^k) = a(j) + (4^k-1)*j^2/3 for any j >= 1, k >= 0. - Jinyuan Wang, Mar 23 2019
Comments