cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135013 Partial sums of A000265.

Original entry on oeis.org

1, 2, 5, 6, 11, 14, 21, 22, 31, 36, 47, 50, 63, 70, 85, 86, 103, 112, 131, 136, 157, 168, 191, 194, 219, 232, 259, 266, 295, 310, 341, 342, 375, 392, 427, 436, 473, 492, 531, 536, 577, 598, 641, 652, 697, 720, 767, 770, 819, 844, 895, 908, 961, 988, 1043, 1050, 1107, 1136
Offset: 1

Views

Author

N. J. A. Sloane, Feb 10 2008

Keywords

Comments

a(n) is also the number of elements in the set {(x,y): 1<=x,y<=n, the fraction x/y reduces to a fraction of the form (odd#)/(odd#)}. - Adam McDougall (mcdougall.adam(AT)gmail.com), Feb 20 2009

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[Times@@(#[[1]]^#[[2]]&/@Select[FactorInteger[i],#[[1]] != 2&]),{i,90}]] (* Harvey P. Dale, Jun 25 2013 *)
  • PARI
    a(n)=sum(k=1,log(n)\log(2)+1,round(n/2^k)^2) \\ Charles R Greathouse IV, Oct 06 2013

Formula

a(n) = Sum_{k>=1} (round(n/2^k))^2. - Alejandro Erickson, Apr 13 2012
a(n) = n^2/3 + O(n) (see MacLeod link). - Michel Marcus, Dec 05 2013
a(j*2^k) = a(j) + (4^k-1)*j^2/3 for any j >= 1, k >= 0. - Jinyuan Wang, Mar 23 2019