A135027 Numbers k such that the sum of the digits of k^2 is 10. Multiples of 10 are omitted.
8, 19, 35, 46, 55, 71, 145, 152, 179, 251, 332, 361, 449, 451, 548, 649, 4499, 20249, 20251, 24499, 100549, 114499, 316261
Offset: 1
Examples
Corresponding squares are 64, 361, 1225, 2116, 3025, 5041, 21025, 23104, 32041, 63001, 110224, 130321, 201601, 203401, 300304, 421201, 20241001, 410022001, 410103001, 600201001, 10110101401, 13110021001, 100021020121. 8^2 = 64 and 6+4 = 10. 316261^2 = 100021020121 and 1+0+0+0+2+1+0+2+0+1+2+1 = 10. - _Zak Seidov_, Aug 26 2009
Links
- Michael S. Branicky, Python program
Programs
-
Mathematica
s={};Do[If[Mod[n,10]>0&&10==Total[IntegerDigits[n^2]],AppendTo[s,n]], {n,10^8}];s (* Zak Seidov, Aug 26 2009 *)
-
PARI
is(n) = sumdigits(n^2)==10 && n%10 > 0 \\ Felix Fröhlich, May 17 2021
-
Python
def A007953(n): a=0 sh=n while sh > 0: a += sh % 10 sh //= 10 return a def isA135027(n): if n % 10 == 0: return False else: return A007953(n**2) == 10 for n in range(70000): if isA135027(n): print(n) # R. J. Mathar, Oct 20 2009
-
Python
# See linked program to go to large numbers def ok(n): return n%10 != 0 and sum(map(int, str(n*n))) == 10 print(list(filter(ok, range(316262)))) # Michael S. Branicky, May 30 2021
Comments