cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135160 a(n) = 5^n + 3^n - 2^n.

Original entry on oeis.org

1, 6, 30, 144, 690, 3336, 16290, 80184, 396930, 1972296, 9823650, 49003224, 244667970, 1222289256, 6108282210, 30531894264, 152630871810, 763068462216, 3815084423970, 19074648065304, 95370917376450, 476847616459176, 2384217167880930, 11921023089868344, 59604927188149890, 298024071132008136
Offset: 0

Views

Author

Omar E. Pol, Nov 21 2007

Keywords

Examples

			a(4)=690 because 5^4=625, 3^4=81, 2^4=16 and we can write 625 + 81 - 16 = 690.
		

Crossrefs

Programs

Formula

a(n) = 5^n + 3^n - 2^n.
From Mohammad K. Azarian, Jan 16 2009: (Start)
G.f.: 1/(1-5*x) + 1/(1-3*x) - 1/(1-2*x).
E.g.f.: e^(5*x) + e^(3*x) - e^(2*x). (End)
a(0)=1, a(1)=6, a(2)=30, a(n) = 10*a(n-1) - 31*a(n-2) + 30*a(n-3). - Harvey P. Dale, Mar 10 2013

Extensions

More terms from Vincenzo Librandi, Dec 15 2010