A135161 a(n) = 7^n - 5^n - 3^n - 2^n. Constants are the prime numbers in decreasing order.
-2, -3, 11, 183, 1679, 13407, 101231, 743103, 5367359, 38380287, 272649551, 1928319423, 13596611039, 95666704767, 672114757871, 4717029550143, 33080299566719, 231867445262847, 1624598512962191, 11379820536259263, 79696895378138399, 558069016462630527, 3907436831406718511
Offset: 0
Examples
a(4) = 1679 because 7^4 = 2401, 5^4 = 625, 3^4 = 81, 2^4 = 16 and we can write 2401 -625 -81 -16 = 1679.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (17,-101,247,-210).
Crossrefs
Programs
-
Magma
[7^n-5^n-3^n-2^n: n in [0..50]] // Vincenzo Librandi, Dec 14 2010
-
Mathematica
Table[7^n-5^n-3^n-2^n,{n,0,30}] (* or *) LinearRecurrence[{17,-101,247,-210},{-2,-3,11,183},30] (* Harvey P. Dale, Sep 23 2016 *)
-
PARI
a(n) = 7^n - 5^n - 3^n - 2^n \\ Charles R Greathouse IV, Sep 30 2016
Formula
From G. C. Greubel, Sep 30 2016: (Start)
a(n) = 17*a(n-1) - 101*a(n-2) + 247*a(n-3) - 210*a(n-4).
G.f.: -x*(-2 + 31 x - 140 x^2 + 187 x^3)/((1 -2*x)*(1 -3*x)*(1 -5*x)*(1 -7*x)).
E.g.f.: exp(7*x) - exp(5*x) - exp(3*x) - exp(2*x). (End)
Extensions
More terms from Vincenzo Librandi, Dec 14 2010