cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135175 a(n) = 5^p + 3^p - 2^p, where p = prime(n).

Original entry on oeis.org

30, 144, 3336, 80184, 49003224, 1222289256, 763068462216, 19074648065304, 11921023089868344, 186264583552936197096, 4656613490748641378424, 72759576592118027485247016, 45474735125119406073899483976, 1136868377544417255992242883544, 710542735786689000089344282510584
Offset: 1

Views

Author

Omar E. Pol, Nov 25 2007

Keywords

Examples

			a(4)=80184 because the 4th prime number is 7, 5^7=78125, 3^7=2187, 2^7=128 and 78125+2187-128=80184.
		

Crossrefs

Cf. 2^p: A034785. 3^p: A057901. 2^5: A057902.

Programs

  • Magma
    [5^p+3^p-2^p: p in PrimesUpTo(100)]; // Vincenzo Librandi, Dec 14 2010
  • Maple
    a:= n-> (p-> 5^p+3^p-2^p)(ithprime(n)):
    seq(a(n), n=1..15);  # Alois P. Heinz, Jun 08 2025
  • Mathematica
    5^#+3^#-2^#&/@Prime[Range[20]]  (* Harvey P. Dale, Apr 04 2011 *)
    Table[5^p + 3^p - 2^p, {p, Prime[Range[20]]}] (* Vincenzo Librandi, May 24 2014 *)

Formula

a(n) = 5^p + 3^p - 2^p with p = A000040(n).

Extensions

More terms from Vincenzo Librandi, Dec 14 2010