cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A181149 a(n) = prime(n)^3 + prime(n)^2 + prime(n).

Original entry on oeis.org

14, 39, 155, 399, 1463, 2379, 5219, 7239, 12719, 25259, 30783, 52059, 70643, 81399, 106079, 151739, 208919, 230763, 305319, 363023, 394419, 499359, 578759, 712979, 922179, 1040603, 1103439, 1236599, 1307019
Offset: 1

Views

Author

Jani Melik, Jan 24 2011

Keywords

Comments

a(n) is semiprime just when prime(n) is in A053182. - Charles R Greathouse IV, Apr 23 2022

Examples

			a(4)=399 because the 4th prime is 7, 7^3 = 343, 7^2 = 49, and 343 + 49 + 7 = 399.
		

Crossrefs

Cf. p: A000040; p^2: A001248; p^3: A030078; p^2+p: A036690; p^3+p^2: A135178.

Programs

Formula

a(n) = A135178(n) + A000040(n). - Elmo R. Oliveira, Mar 22 2023

A181151 a(n) = prime(n)^3 + prime(n)^2 + 1.

Original entry on oeis.org

13, 37, 151, 393, 1453, 2367, 5203, 7221, 12697, 25231, 30753, 52023, 70603, 81357, 106033, 151687, 208861, 230703, 305253, 362953, 394347, 499281, 578677, 712891, 922083, 1040503, 1103337, 1236493, 1306911, 1455667, 2064513, 2265253, 2590123, 2704941, 3330151, 3465753, 3894543, 4357317, 4685353, 5207647, 5767381
Offset: 1

Views

Author

Jani Melik, Jan 24 2011

Keywords

Examples

			a(4)=393 because the 4th prime is 7, 7^3=343, 7^2=49, and 343+49+1=393.
		

Crossrefs

Programs

  • Magma
    [p^3+p^2+1: p in PrimesUpTo(700)]; // Vincenzo Librandi, Jan 26 2011
  • Maple
    A181151 := n -> map (p -> p^(3)+p^(2)+1, ithprime(n)):
    seq (A181151(n), n=1..41);
  • Mathematica
    #^3+#^2+1&/@Prime[Range[45]]  (* Harvey P. Dale, Jan 25 2011 *)

Formula

a(n) = A135178(n) + 1. - Elmo R. Oliveira, Jan 27 2023
Showing 1-2 of 2 results.