A135278 Triangle read by rows, giving the numbers T(n,m) = binomial(n+1, m+1); or, Pascal's triangle A007318 with its left-hand edge removed.
1, 2, 1, 3, 3, 1, 4, 6, 4, 1, 5, 10, 10, 5, 1, 6, 15, 20, 15, 6, 1, 7, 21, 35, 35, 21, 7, 1, 8, 28, 56, 70, 56, 28, 8, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1, 12, 66, 220, 495, 792, 924, 792
Offset: 0
Examples
The triangle T(n, k) begins: n\k 0 1 2 3 4 5 6 7 8 9 10 11 ... 0: 1 1: 2 1 2: 3 3 1 3: 4 6 4 1 4: 5 10 10 5 1 5: 6 15 20 15 6 1 6: 7 21 35 35 21 7 1 7: 8 28 56 70 56 28 8 1 8: 9 36 84 126 126 84 36 9 1 9: 10 45 120 210 252 210 120 45 10 1 10: 11 55 165 330 462 462 330 165 55 11 1 11: 12 66 220 495 792 924 792 495 220 66 12 1 ... reformatted by _Wolfdieter Lang_, Mar 23 2015 Production matrix begins 2 1 -1 1 1 1 0 1 1 -1 0 0 1 1 1 0 0 0 1 1 -1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 -1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 - _Philippe Deléham_, Jan 29 2014 From _Wolfdieter Lang_, Nov 08 2018: (Start) Recurrence [_Philippe Deléham_]: T(7, 3) = 2*35 + 35 - 15 - 20 = 70. Recurrence from Riordan A- and Z-sequences: [1,1,repeat(0)] and [2, repeat(-1, +1)]: From Z: T(5, 0) = 2*5 - 10 + 10 - 5 + 1 = 6. From A: T(7, 3) = 35 + 35 = 70. Boas-Buck column k=3 recurrence: T(7, 3) = (5/4)*(1 + 5 + 15 + 35) = 70. (End)
Links
- G. C. Greubel, Table of n, a(n) for the first 101 rows, flattened
- Paul Barry, On the f-Matrices of Pascal-like Triangles Defined by Riordan Arrays, arXiv:1805.02274 [math.CO], 2018.
- L. Boya and K. Dixit, Geometry of density states, arXiv:808.1930 [quant-phy], 2017.
- V. Buchstaber, Lectures on Toric Topology, Trends in Mathematics - New Series, Information Center for Mathematical Sciences, Vol. 10, No. 1, 2008. p. 7.
- Tom Copeland, Cyclotomic polynomials in combinatorics
- Tom Copeland, Goin' with the Flow: Logarithm of the Derivative Operator Part VI on simplices
- D. Dugger, A Geometric Introduction to K-Theory [From _Tom Copeland_, Apr 11 2014]
- Atli Fannar Franklín, Pattern avoidance enumerated by inversions, arXiv:2410.07467 [math.CO], 2024. See pp. 2, 12.
- Atli Fannar Franklín, Anders Claesson, Christian Bean, Henning Úlfarsson, and Jay Pantone, Restricted Permutations Enumerated by Inversions, arXiv:2406.16403 [cs.DM], 2024. See p. 4.
- B. Grünbaum and G. C. Shephard, Convex polytopes, Bull. London Math. Soc. (1969) 1 (3): 257-300.
- G. Hetyei, Meixner polynomials of the second kind and quantum algebras representing su(1,1), arXiv preprint arXiv:0909.4352 [math.QA], 2009, p. 4 (Added by _Tom Copeland_, Oct 01 2015).
- Justin Hughes, Representations Arising from an Action on D-neighborhoods of Cayley Graphs, 2013; slides from a talk.
- Wolfdieter Lang, On Generating functions of Diagonals Sequences of Sheffer and Riordan Number Triangles, arXiv:1708.01421 [math.NT], August 2017.
- Wikipedia, Simplex
Crossrefs
Programs
-
Maple
for i from 0 to 12 do seq(binomial(i, j)*1^(i-j), j = 1 .. i) od;
-
Mathematica
Flatten[Table[CoefficientList[D[1/x ((x + 1) Exp[(x + 1) z] - Exp[z]), {z, k}] /. z -> 0, x], {k, 0, 11}]] CoefficientList[CoefficientList[Series[1/((1 - x)*(1 - x - x*y)), {x, 0, 10}, {y, 0, 10}], x], y] // Flatten (* G. C. Greubel, Nov 22 2017 *)
-
PARI
for(n=0, 20, for(k=0, n, print1(1/k!*sum(i=0, n, (prod(j=0, k-1, i-j))), ", "))) \\ Derek Orr, Oct 14 2014
-
Sage
Trow = lambda n: sum((x+1)^j for j in (0..n)).list() for n in (0..10): print(Trow(n)) # Peter Luschny, Jul 09 2019
Formula
T(n, k) = Sum_{j=k..n} binomial(j,k) = binomial(n+1, k+1), n >= k >= 0, else 0. (Partial sum of column k of A007318 (Pascal), or summation on the upper binomial index (Graham et al. (GKP), eq. (5.10). For the GKP reference see A007318.) - Wolfdieter Lang, Aug 22 2012
E.g.f.: 1/x*((1 + x)*exp(t*(1 + x)) - exp(t)) = 1 + (2 + x)*t + (3 + 3*x + x^2)*t^2/2! + .... The infinitesimal generator for this triangle has the sequence [2,3,4,...] on the main subdiagonal and 0's elsewhere. - Peter Bala, Jul 16 2013
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k) - T(n-2,k-1), T(0,0)=1, T(1,0)=2, T(1,1)=1, T(n,k)=0 if k<0 or if k>n. - Philippe Deléham, Dec 27 2013
T(n,k) = A193862(n,k)/2^k. - Philippe Deléham, Jan 29 2014
G.f.: 1/((1-x)*(1-x-x*y)). - Philippe Deléham, Mar 13 2014
From Tom Copeland, Mar 26 2014: (Start)
[From Copeland's 2007 and 2008 comments]
A) O.g.f.: 1 / { [ 1 - t * x/(1-x) ] * (1-x)^2 } (same as Deleham's).
B) The infinitesimal generator for T is given in A132681 with m=1 (same as Bala's), which makes connections to the ubiquitous associated Laguerre polynomials of integer orders, for this case the Laguerre polynomials of order one L(n,-t,1).
C) O.g.f. of row e.g.f.s: Sum_{n>=0} L(n,-t,1) x^n = exp[t*x/(1-x)]/(1-x)^2 = 1 + (2+t)x + (3+3*t+t^2/2!)x^2 + (4+6*t+4*t^2/2!+t^3/3!)x^3+ ... .
D) E.g.f. of row o.g.f.s: ((1+t)*exp((1+t)*x)-exp(x))/t (same as Bala's).
E) E.g.f. for T(n,k)*a(n-k): {(a+t) exp[(a+t)x] - a exp(a x)}/t, umbrally. For example, for a(k)=2^k, the e.g.f. for the row o.g.f.s is {(2+t) exp[(2+t)x] - 2 exp(2x)}/t.
(End)
From Tom Copeland, Apr 28 2014: (Start)
With different indexing
A) O.g.f. by row: [(1+t)^n-1]/t.
B) O.g.f. of row o.g.f.s: {1/[1-(1+t)*x] - 1/(1-x)}/t.
C) E.g.f. of row o.g.f.s: {exp[(1+t)*x]-exp(x)}/t.
These generating functions are related to row e.g.f.s of A111492. (End)
From Tom Copeland, Sep 17 2014: (Start)
A) U(x,s,t)= x^2/[(1-t*x)(1-(s+t)x)] = Sum_{n >= 0} F(n,s,t)x^(n+2) is a generating function for bivariate row polynomials of T, e.g., F(2,s,t)= s^2 + 3s*t + 3t^2 (Buchstaber, 2008).
B) dU/dt=x^2 dU/dx with U(x,s,0)= x^2/(1-s*x) (Buchstaber, 2008).
C) U(x,s,t) = exp(t*x^2*d/dx)U(x,s,0) = U(x/(1-t*x),s,0).
D) U(x,s,t) = Sum[n >= 0, (t*x)^n L(n,-:xD:,-1)] U(x,s,0), where (:xD:)^k=x^k*(d/dx)^k and L(n,x,-1) are the Laguerre polynomials of order -1, related to normalized Lah numbers. (End)
E.g.f. satisfies the differential equation d/dt(e.g.f.(x,t)) = (x+1)*e.g.f.(x,t) + exp(t). - Vincent J. Matsko, Jul 18 2015
The e.g.f. of the Norlund generalized Bernoulli (Appell) polynomials of order m, NB(n,x;m), is given by exponentiation of the e.g.f. of the Bernoulli numbers, i.e., multiple binomial self-convolutions of the Bernoulli numbers, through the e.g.f. exp[NB(.,x;m)t] = (t/(e^t - 1))^(m+1) * e^(xt). Norlund gave the relation to the factorials (x-1)!/(x-1-n)! = (x-1) ... (x-n) = NB(n,x;n), so T(n,m) = NB(m+1,n+2;m+1)/(m+1)!. - Tom Copeland, Oct 01 2015
From Wolfdieter Lang, Nov 08 2018: (Start)
Recurrences from the A- and Z- sequences for the Riordan triangle (see the W. Lang link under A006232 with references), which are A(n) = A019590(n+1), [1, 1, repeat (0)] and Z(n) = (-1)^(n+1)*A054977(n), [2, repeat(-1, 1)]:
T(0, 0) = 1, T(n, k) = 0 for n < k, and T(n, 0) = Sum_{j=0..n-1} Z(j)*T(n-1, j), for n >= 1, and T(n, k) = T(n-1, k-1) + T(n-1, k), for n >= m >= 1.
Boas-Buck recurrence for columns (see the Aug 10 2017 remark in A036521 also for references):
T(n, k) = ((2 + k)/(n - k))*Sum_{j=k..n-1} T(j, k), for n >= 1, k = 0, 1, ..., n-1, and input T(n, n) = 1, for n >= 0, (the BB-sequences are alpha(n) = 2 and beta(n) = 1). (End)
T(n, k) = [x^k] Sum_{j=0..n} (x+1)^j. - Peter Luschny, Jul 09 2019
Extensions
Edited by Tom Copeland and N. J. A. Sloane, Dec 11 2007
Comments