cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135291 Product of the nonzero exponents in the prime factorization of n!.

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 8, 8, 14, 28, 64, 64, 100, 100, 220, 396, 540, 540, 768, 768, 1152, 1944, 4104, 4104, 5280, 7920, 16560, 21528, 31200, 31200, 40768, 40768, 48608, 78120, 161280, 230400, 277440, 277440, 571200, 907200, 1108080, 1108080, 1440504, 1440504, 2019168
Offset: 0

Views

Author

Leroy Quet, Dec 03 2007

Keywords

Comments

a(n) = A005361(n!). For n >= 2, a(n) = the number of positive divisors of n! which themselves are each divisible by every prime <= n. For p = any prime, a(p) = a(p-1). a(0)=a(1)=1 because the product of the exponents is over the empty set.

Examples

			6! = 720 has a prime factorization of 2^4 * 3^2 * 5^1. So a(6) = 4*2*1 = 8.
Also, 720 is divisible by a(6)=8 positive divisors which themselves are each divisible by every prime <= 6 (i.e., are each divisible by 2*3*5 = 30): 30, 60, 90, 120, 180, 240, 360, 720.
		

Crossrefs

Programs

  • Maple
    A005361 := proc(n) mul( op(2,i),i=ifactors(n)[2]) ; end: A135291 := proc(n) A005361(n!) ; end: seq(A135291(n),n=0..50) ; # R. J. Mathar, Dec 12 2007
    # second Maple program:
    b:= proc(n) option remember; `if`(n<1, 1,
          b(n-1)+add(i[2]*x^i[1], i=ifactors(n)[2]))
        end:
    a:= n-> mul(i, i=coeffs(b(n))):
    seq(a(n), n=0..44);  # Alois P. Heinz, Jun 02 2025
  • Mathematica
    Table[Product[FactorInteger[n! ][[i, 2]], {i, 1, Length[FactorInteger[n! ]]}], {n, 0, 50}] (* Stefan Steinerberger, Dec 05 2007 *)
    Table[Times@@Transpose[FactorInteger[n!]][[2]],{n,0,50}] (* Harvey P. Dale, Aug 16 2011 *)
  • PARI
    valp(n,p)=my(s); while(n\=p, s+=n); s
    a(n)=my(s=1); forprime(p=2,n\2, s*=valp(n,p)); s \\ Charles R Greathouse IV, Oct 09 2016
    
  • Python
    from math import prod
    from collections import Counter
    from sympy import factorint
    def A135291(n): return prod(sum((Counter(factorint(i)) for i in range(2,n+1)),start=Counter()).values()) # Chai Wah Wu, Jun 02 2025

Formula

a(n) = A000005(A049614(n)). - Ridouane Oudra, Sep 02 2019
a(n) = exp((n/log(n)) * (Sum_{k=0..M} e_k/log(n)^k) + O(n/log(n)^(M+2))) for any given integer M >= 0, where e_k = k! * Sum_{j=0..k} (1/j!) * Sum_{s>=1} (log(s+1)^j/(s+1))*log(1+1/s) are constants (e_0 = A085361) (De Koninck and Verreault, 2024, p. 54, Theorem 4.4). - Amiram Eldar, Dec 10 2024

Extensions

More terms from Stefan Steinerberger and R. J. Mathar, Dec 05 2007