A135360 a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) for n > 4, with first terms 1, 2, 4, 7.
1, 2, 4, 7, 12, 22, 44, 92, 192, 392, 784, 1552, 3072, 6112, 12224, 24512, 49152, 98432, 196864, 393472, 786432, 1572352, 3144704, 6290432, 12582912, 25167872, 50335744, 100667392, 201326592, 402644992, 805289984, 1610596352, 3221225472, 6442483712, 12884967424
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4).
Programs
-
Mathematica
Join[{1}, LinearRecurrence[{4, -6, 4}, {2, 4, 7}, 25]] (* G. C. Greubel, Oct 11 2016 *)
-
PARI
lista(nn) = {v = vector(nn); v[1] = 1; v[2] = 2; v[3] = 4; v[4] = 7; for (k=5, nn, v[k] = 4*v[k-1]-6*v[k-2]+4*v[k-3];); v;} \\ Michel Marcus, May 06 2015
Formula
a(n) = 2^n + A000749(n). - Michel Marcus, May 06 2015
G.f.: (1 - x)*(1 - x + x^2)/((1 - 2*x)*(1 - 2*x + 2*x^2)). [Bruno Berselli, May 06 2015]
Extensions
More terms from Michel Marcus, May 06 2015
Comments