cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135453 a(n) = 12*n^2.

Original entry on oeis.org

0, 12, 48, 108, 192, 300, 432, 588, 768, 972, 1200, 1452, 1728, 2028, 2352, 2700, 3072, 3468, 3888, 4332, 4800, 5292, 5808, 6348, 6912, 7500, 8112, 8748, 9408, 10092, 10800, 11532, 12288, 13068, 13872, 14700, 15552, 16428, 17328, 18252, 19200, 20172, 21168, 22188
Offset: 0

Views

Author

Ben Paul Thurston, Dec 14 2007

Keywords

Comments

Areas of perfect 4:3 rectangles (for n > 0).
Sequence found by reading the line from 0, in the direction 0, 12, ..., in the square spiral whose vertices are the generalized octagonal numbers A001082. Semi-axis opposite to A069190 in the same spiral. - Omar E. Pol, Sep 16 2011
(x,y,z) = (-a(n), 1 + n*a(n), 1 - n*a(n)) are solutions of the Diophantine equation x^3 + 2*y^3 + 2*z^3 = 4. - XU Pingya, Apr 30 2022

Examples

			192 is on the list since 16*12 is a 4:3 rectangle with integer sides and an area of 192.
		

Crossrefs

Programs

Formula

a(n) = 12*A000290(n) = 6*A001105(n) = 4*A033428(n) = 3*A016742(n) = 2*A033581(n). - Omar E. Pol, Dec 13 2008
From Amiram Eldar, Feb 03 2021: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/72 (A086729).
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/144.
Product_{n>=1} (1 + 1/a(n)) = 2*sqrt(3)*sinh(Pi/(2*sqrt(3)))/Pi.
Product_{n>=1} (1 - 1/a(n)) = 2*sqrt(3)*sin(Pi/(2*sqrt(3)))/Pi. (End)
From Elmo R. Oliveira, Nov 30 2024: (Start)
G.f.: 12*x*(1 + x)/(1-x)^3.
E.g.f.: 12*x*(1 + x)*exp(x).
a(n) = n*A008594(n) = A195143(2*n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

Extensions

More terms from Stefan Steinerberger, Dec 17 2007
Minor edits from Omar E. Pol, Dec 15 2008