A135499 Numbers for which Sum_digits(odd positions) = Sum_digits(even positions).
11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 121, 132, 143, 154, 165, 176, 187, 198, 220, 231, 242, 253, 264, 275, 286, 297, 330, 341, 352, 363, 374, 385, 396, 440, 451, 462, 473, 484, 495, 550, 561, 572, 583, 594, 660, 671, 682, 693, 770, 781, 792, 880, 891, 990
Offset: 1
Examples
594, 1023, and 1397 are terms: 594 -> 4 + 5 = 9; 1023 -> 3 + 0 = 2 + 1; 1397 -> 7 + 3 = 9 + 1.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000 (first 119 terms from _Paolo P. Lava_ and _Giorgio Balzarotti_)
Programs
-
Haskell
a135499 n = a135499_list !! (n-1) a135499_list = filter ((== 0) . a225693) [1..] -- Reinhard Zumkeller, Aug 08 2014, Jul 05 2014
-
Maple
P:=proc(n) local i,k,w,x; for i from 1 by 1 to n do w:=0; k:=i; while k>0 do w:=w+k-(trunc(k/10)*10); k:=trunc(k/10); od; x:=0; k:=i; while k>0 do x:=x+(k-(trunc(k/10)*10)); k:=trunc(k/100); od; if w=2*x then print(i); fi; od; end: P(3000); # Alternative: filter:= proc(n) local L,d; L:= convert(n,base,10); d:= nops(L); add(L[2*i],i=1..floor(d/2)) = add(L[2*i-1],i=1..floor((d+1)/2)) end proc: select(filter,[ 11*j $ j= 1 .. 10^4 ]); # Robert Israel, May 28 2014
-
Mathematica
dQ[n_]:=Module[{p=Transpose[Partition[IntegerDigits[n],2,2,1,0]]},Total[First[p]]== Total[Last[p]]]; Select[Range[1000],dQ] (* Harvey P. Dale, May 26 2011 *)
Comments