cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135611 Decimal expansion of sqrt(2) + sqrt(3).

Original entry on oeis.org

3, 1, 4, 6, 2, 6, 4, 3, 6, 9, 9, 4, 1, 9, 7, 2, 3, 4, 2, 3, 2, 9, 1, 3, 5, 0, 6, 5, 7, 1, 5, 5, 7, 0, 4, 4, 5, 5, 1, 2, 4, 7, 7, 1, 2, 9, 1, 8, 7, 3, 2, 8, 7, 0, 1, 2, 3, 2, 4, 8, 6, 7, 1, 7, 4, 4, 2, 6, 6, 5, 4, 9, 5, 3, 7, 0, 9, 0, 7, 0, 7, 5, 9, 3, 1, 5, 3, 3, 7, 2, 1, 0, 8, 4, 8, 9, 0, 1, 4
Offset: 1

Views

Author

N. J. A. Sloane, Mar 03 2008

Keywords

Comments

From Alexander R. Povolotsky, Mar 04 2008: (Start)
The value of sqrt(2) + sqrt(3) ~= 3.146264369941972342329135... is "close" to Pi. [See Borel 1926. - Charles R Greathouse IV, Apr 26 2014] We can get a better approximation by solving the equation: (2-x)^(1/(2+x)) + (3-x)^(1/(2+x)) = Pi.
Olivier Gérard finds that x is 0.00343476569746030039595770020414255107204742044644777... (End)
Another approximation to Pi is (203*sqrt(2)+ 197*sqrt(3))/200 = 3.1414968... - Alexander R. Povolotsky, Mar 22 2008
Shape of a sqrt(8)-extension rectangle; see A188640. - Clark Kimberling, Apr 13 2011
This number is irrational, as instinct would indicate. Niven (1961) gives a proof of irrationality that requires first proving that sqrt(6) is irrational. - Alonso del Arte, Dec 07 2012
An algebraic integer of degree 4: largest root of x^4 - 10*x^2 + 1. - Charles R Greathouse IV, Sep 13 2013
Karl Popper considers whether this approximation to Pi might have been known to Plato, or even conjectured to be exact. - Charles R Greathouse IV, Apr 26 2014

Examples

			3.14626436994197234232913506571557044551247712918732870...
		

References

  • Emile Borel, Space and Time (1926).
  • Ivan Niven, Numbers: Rational and Irrational. New York: Random House for Yale University (1961): 44.
  • Ian Stewart & David Tall, Algebraic Number Theory and Fermat's Last Theorem, 3rd Ed. Natick, Massachusetts: A. K. Peters (2002): 44.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Sqrt(2) + Sqrt(3); // G. C. Greubel, Nov 20 2018
    
  • Maple
    evalf(add(sqrt(ithprime(i)), i=1..2), 118);  # Alois P. Heinz, Jun 13 2022
  • Mathematica
    r = 8^(1/2); t = (r + (4 + r^2)^(1/2))/2; FullSimplify[t]
    N[t, 130]
    RealDigits[N[t, 130]][[1]] (* A135611 *)
    ContinuedFraction[t, 120]  (* A089078 *)
    RealDigits[Sqrt[2] + Sqrt[3], 10, 100][[1]] (* G. C. Greubel, Oct 22 2016 *)
  • PARI
    sqrt(2)+sqrt(3) \\ Charles R Greathouse IV, Sep 13 2013
    
  • Sage
    numerical_approx(sqrt(2)+sqrt(3), digits=100) # G. C. Greubel, Nov 20 2018

Formula

Sqrt(2)+sqrt(3) = sqrt(5+2*sqrt(6)). [Landau, p. 85] - N. J. A. Sloane, Aug 27 2018
Equals 1/A340616. - Hugo Pfoertner, May 08 2024
Equals Product_{k>=0} (((4*k + 1)*(12*k + 11))/((4*k + 3)*(12*k + 1)))^(-1)^k. - Antonio Graciá Llorente, May 22 2024