A135611 Decimal expansion of sqrt(2) + sqrt(3).
3, 1, 4, 6, 2, 6, 4, 3, 6, 9, 9, 4, 1, 9, 7, 2, 3, 4, 2, 3, 2, 9, 1, 3, 5, 0, 6, 5, 7, 1, 5, 5, 7, 0, 4, 4, 5, 5, 1, 2, 4, 7, 7, 1, 2, 9, 1, 8, 7, 3, 2, 8, 7, 0, 1, 2, 3, 2, 4, 8, 6, 7, 1, 7, 4, 4, 2, 6, 6, 5, 4, 9, 5, 3, 7, 0, 9, 0, 7, 0, 7, 5, 9, 3, 1, 5, 3, 3, 7, 2, 1, 0, 8, 4, 8, 9, 0, 1, 4
Offset: 1
Examples
3.14626436994197234232913506571557044551247712918732870...
References
- Emile Borel, Space and Time (1926).
- Ivan Niven, Numbers: Rational and Irrational. New York: Random House for Yale University (1961): 44.
- Ian Stewart & David Tall, Algebraic Number Theory and Fermat's Last Theorem, 3rd Ed. Natick, Massachusetts: A. K. Peters (2002): 44.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..2500
- Susan Landau, Simplification of nested radicals, SIAM Journal on Computing 21.1 (1992): 85-110. See page 85. [Do not confuse this paper with the short FOCS conference paper with the same title, which is only a few pages long.]
- Burkard Polster, Irrational roots, Mathologer video (2018)
- Karl Popper, The Open Society and Its Enemies, 1962.
- Index entries for algebraic numbers, degree 4
Programs
-
Magma
SetDefaultRealField(RealField(100)); Sqrt(2) + Sqrt(3); // G. C. Greubel, Nov 20 2018
-
Maple
evalf(add(sqrt(ithprime(i)), i=1..2), 118); # Alois P. Heinz, Jun 13 2022
-
Mathematica
r = 8^(1/2); t = (r + (4 + r^2)^(1/2))/2; FullSimplify[t] N[t, 130] RealDigits[N[t, 130]][[1]] (* A135611 *) ContinuedFraction[t, 120] (* A089078 *) RealDigits[Sqrt[2] + Sqrt[3], 10, 100][[1]] (* G. C. Greubel, Oct 22 2016 *)
-
PARI
sqrt(2)+sqrt(3) \\ Charles R Greathouse IV, Sep 13 2013
-
Sage
numerical_approx(sqrt(2)+sqrt(3), digits=100) # G. C. Greubel, Nov 20 2018
Formula
Sqrt(2)+sqrt(3) = sqrt(5+2*sqrt(6)). [Landau, p. 85] - N. J. A. Sloane, Aug 27 2018
Equals 1/A340616. - Hugo Pfoertner, May 08 2024
Equals Product_{k>=0} (((4*k + 1)*(12*k + 11))/((4*k + 3)*(12*k + 1)))^(-1)^k. - Antonio Graciá Llorente, May 22 2024
Comments