cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A138843 Concatenation of initial and final digits of n-th perfect number.

Original entry on oeis.org

66, 28, 46, 88, 36, 86, 18, 28, 26, 16, 18, 18, 26, 18, 58, 18, 96, 36, 16, 48, 16, 56, 36, 96, 16, 86, 36, 18, 18, 16, 28, 18, 86, 88, 36, 16, 86, 96, 46
Offset: 1

Views

Author

Omar E. Pol, Apr 02 2008

Keywords

Comments

Also, concatenation of A135617(n) and A094540(n).

Examples

			a(5)=36 because the 5th perfect number A000396(5) is 33550336 and the concatenation of initial and final digits of 33550336 is 36.
		

Crossrefs

A138125 Final digit of n-th even superperfect number A061652(n).

Original entry on oeis.org

2, 4, 6, 4, 6, 6, 4, 4, 6, 6, 4, 4, 6, 4, 4, 4, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 4, 4, 6, 4, 4, 6, 4, 6, 6, 6, 6, 6, 4, 4, 4, 6, 6, 4, 6, 6
Offset: 1

Views

Author

Omar E. Pol, Apr 01 2008, corrected Apr 03 2008

Keywords

Comments

Also, final digit of n-th superperfect number A019279(n), if there are no odd superperfect numbers.

Examples

			a(5)=6 because the 5th even superperfect number A061652(5) is 4096 and the final digit of 4096 is 6.
a(34)=4 because the final digit of 34th Mersenne prime is 7. a(39)=6 because the final digit of 39th Mersenne prime is 1.
.............................................................
............... SHORT TABLE OF FINAL DIGITS .................
.............................................................
Final digit of ..... Final digit of Even ..... Final digit of
Mersenne prime ..... Superperfect number ..... Perfect number
A000668 ............ A061652 ................. A000396........
(3) ................ (2) ..................... (6) ........... (For n=1, only)
(7) ................ (4) ..................... (8) ...........
(1) ................ (6) ..................... (6) ...........
		

Crossrefs

Programs

  • Mathematica
    Mod[#,10]&/@(2^(MersennePrimeExponent[Range[47]]-1)) (* Harvey P. Dale, Feb 23 2023 *)

Formula

a(1)=2. For n>1, if final digit of n-th Mersenne prime A000668(n) is equal to 1 then a(n)=6, otherwise a(n)=4.

Extensions

a(40)-a(47) from Jinyuan Wang, Mar 14 2020

A138816 Concatenation of initial digit of n-th Mersenne prime A000668(n), initial digit of n-th even superperfect number A061652(n) and initial digit of n-th perfect number A000396(n).

Original entry on oeis.org

326, 742, 314, 168, 843, 168, 521, 212, 212, 631, 181, 181, 632, 521, 155
Offset: 1

Views

Author

Omar E. Pol, Apr 01 2008

Keywords

Comments

Also, concatenation of initial digit of n-th Mersenne prime A000668(n), initial digit of n-th superperfect number A019279(n) and initial digit of n-th perfect number A000396(n), if there are no odd superperfect numbers.
Also, concatenation of A135613(n), A138124(n) and A135617(n).

Crossrefs

Extensions

a(13)-a(15) from Robert Price, Jun 16 2019

A138818 Concatenation of initial digit of n-th even superperfect number A061652(n), initial digit of n-th Mersenne prime A000668(n) and initial digit of n-th perfect number A000396(n).

Original entry on oeis.org

236, 472, 134, 618, 483, 618, 251, 122, 122, 361, 811, 811
Offset: 1

Views

Author

Omar E. Pol, Apr 05 2008

Keywords

Comments

Also, concatenation of initial digit of n-th superperfect number A019279(n), initial digit of n-th Mersenne prime A000668(n) and initial digit of n-th perfect number A000396(n), if there are no odd superperfect numbers.
Also, concatenation of A138124(n), A135613(n) and A135617(n).

Crossrefs

A138124 Initial digit of n-th even superperfect number A061652(n).

Original entry on oeis.org

2, 4, 1, 6, 4, 6, 2, 1, 1, 3, 8, 8, 3, 2, 5, 7, 2, 1, 9, 1, 2, 1, 1, 2, 2, 2, 4, 2, 2, 2, 3, 8, 6, 2, 4, 3, 6, 2, 4
Offset: 1

Views

Author

Omar E. Pol and Robert G. Wilson v, Apr 01 2008

Keywords

Comments

Also, initial digit of n-th superperfect number A019279(n), if there are no odd superperfect numbers.

Examples

			a(5)=4 because the 5th even superperfect number A061652(5) is 4096 and the initial digit of 4096 is 4.
		

Crossrefs

Programs

  • Mathematica
    lst = {2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917}; f[n_] := Block[{pn = 2^(n - 1)}, Quotient[pn, 10^Floor[Log[10, pn]]]]; f@# & /@ (* Robert G. Wilson v, Apr 01 2008 *)

Extensions

a(13)-a(39) from Robert G. Wilson v, Apr 01 2008

A138876 First 3 digits of n-th even perfect number.

Original entry on oeis.org

6, 28, 496, 812, 335, 858, 137, 230, 265, 191, 131, 144, 235, 141, 541, 108, 994, 335, 182, 407, 114, 598, 395, 931, 100, 811, 365, 144, 136, 131, 278, 151, 838, 849, 331, 194, 811, 955, 427, 793, 448, 746, 497, 775, 204, 144, 500
Offset: 1

Views

Author

Omar E. Pol, Apr 02 2008

Keywords

Comments

As of August 6, 2018, GIMPS reports that all Mersenne primes through the 47th have been positively identified, i.e., that there are no further such primes below the 47th. Thus, the sequence through a(47), i.e., through the term 500, is complete. Additional terms (169, 451, 109) are correct but it is still possible that more terms may be found above a(47) but below a(50). [Harvey P. Dale, Jul 17 2011] [Updated by Ivan Panchenko, Aug 06 2018]

Crossrefs

First three digits of each term from A138877. [Steven Bi (chenhsi(AT)stanford.edu), Jan 18 2009]

Programs

  • Mathematica
    f[n_] := Block[{e, p, mpe = MersennePrimeExponent@ n}, p = (2^mpe - 1) 2^(mpe - 1); e = IntegerLength@ p - 3; If[e < 1, p, Quotient[p, 10^e]]]; Array[f, 44] (* Robert G. Wilson v, Aug 06 2018 *)

Extensions

a(15)-a(31) added by Steven Bi (chenhsi(AT)stanford.edu), Jan 18 2009
Corrected a(27) and added a(32) through a(40) by Harvey P. Dale, Jul 17 2011
Definition changed (inserting the word "even") and a(41)-a(47) added by Ivan Panchenko, Aug 04 2018

A138839 Concatenation of initial and final digits of n-th perfect number, divided by 2.

Original entry on oeis.org

33, 14, 23, 44, 18, 43, 9, 14, 13, 8, 9, 9, 13, 9, 29, 9, 48, 18, 8, 24, 8, 28, 18, 48, 8, 43, 18, 9, 9, 8, 14, 9, 43, 44, 18, 8, 43, 48, 23
Offset: 1

Views

Author

Omar E. Pol, Apr 02 2008

Keywords

Comments

Also, concatenation of A135617(n) and A094540(n), divided by 2.

Examples

			a(5)=18 because the 5th perfect number A000396(5) is 33550336 and the concatenation of initial and final digits of 33550336 is 36 and 36/2 = 18.
		

Crossrefs

Showing 1-7 of 7 results.