cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A135849 a(n) is the ratio of the sum of the bends (curvatures) of the circles in the n-th generation of an Apollonian packing to the sum of the bends in the initial four-circle configuration.

Original entry on oeis.org

1, 5, 39, 297, 2259, 17181, 130671, 993825, 7558587, 57487221, 437222007, 3325314393, 25290849123, 192350849805, 1462934251071, 11126421459153, 84622568920011, 643601286982629, 4894942589100999, 37228736851860105, 283145067047577843, 2153474325825042429
Offset: 1

Views

Author

Colin Mallows, Mar 06 2008

Keywords

Comments

These ratios are independent of the starting configuration.
For more comments, references and links, see A189226.

Examples

			Starting with the configuration with bends (-1,2,2,3) with sum(bends) = 6, the next generation contains four circles with bends 3,6,6,15. The sum is 30 = 6*a(2). The third generation has 12 circles with sum(bends) = 234 = 6*a(3).
		

Crossrefs

Programs

  • Magma
    I:=[1, 5, 39]; [n le 3 select I[n] else  8*Self(n-1) - 3*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Dec 25 2012
  • Mathematica
    CoefficientList[Series[(2 z^2 - 3 z + 1)/(3 z^2 - 8 z + 1), {z, 0, 100}], z] (* and *) LinearRecurrence[{8, -3}, {1, 5, 39}, 100] (* Vladimir Joseph Stephan Orlovsky, Jul 03 2011 *)
  • PARI
    Vec((2*x^3 - 3*x^2 + x)/(3*x^2 - 8*x + 1)+O(x^99)) \\ Charles R Greathouse IV, Jul 03 2011
    

Formula

For n >= 4, a(n) = 8*a(n-1) - 3*a(n-2).
For n>2, [a(n+2), a(n+3)] = the 2 X 2 matrix [0,1; -3,8]^n * [5,39]. Example: [0,1; -3,8]^3 * [5,39] = [a(5), a(6)] = [2259, 17181]. - Gary W. Adamson, Mar 09 2008 (typo corrected by Jonathan Sondow, Dec 24 2012)
a(n) = floor(C * A138264(n)), where C = 1.057097576... = (1/2)*((1/9) + sqrt((1/81) + 4)). Example: a(7) = 130671 = floor(C * A138264(7)) = floor(C * 123613). A135849(n)/A138264(n) tends to C. - Gary W. Adamson, Mar 09 2008
O.g.f.: 2*x/3 +7/9 +(59*x-7)/(9*(1-8*x+3*x^2)). - R. J. Mathar, Apr 24 2008
a(n) = 31*sqrt(13)*(A^n - B^n)/234 - 7*(A^n + B^n)/18 for n>1 where A=3/(4-sqrt(13)) and B=3/(4+sqrt(13)). - R. J. Mathar, Apr 24 2008