A135862 a(n) = binomial(n*(n+1),n)/(n^2+1).
1, 1, 3, 22, 285, 5481, 141778, 4638348, 184138713, 8612835715, 464333035881, 28368973183200, 1938034271677595, 146439782923866810, 12129248258088578100, 1092975597259714940696, 106463932364272178140209, 11148388021809242372111895, 1248977393391271550436645787
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..339
- D. Armstrong, B. Rhoades, and N. Williams, Rational associahedra and noncrossing partitions arxiv:1305.7286v1 [math.CO], 2013.
- R. Mestrovic, Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2011), arXiv:1111.3057 [math.NT], 2011.
Programs
-
Magma
[Binomial(n*(n+1),n)/(n^2+1): n in [0..20]]; // Vincenzo Librandi, Dec 09 2015
-
Mathematica
Table[Binomial[n (n + 1), n]/(n^2 + 1), {n, 0, 30}] (* Vincenzo Librandi, Dec 09 2015 *)
-
PARI
a(n)=binomial(n*(n+1),n)/(n^2+1) for(n=0,30,print1(a(n),", "))
-
PARI
{a(n) = local(A=1+x); for(i=1, n, A = exp( sum(k=1, n, A^(n*k)*x^k/k +x*O(x^n)))); polcoeff(A, n)} for(n=0,30,print1(a(n),", "))
Formula
a(n) = A135860(n)/(n^2+1).
a(n) = 1/(n^2 + n + 1)*binomial(n^2 + n + 1, n). - Peter Bala, Dec 02 2015
Ccongruences: a(p) == (1 + p - p^2 - p^3) ( mod p^4 ) for prime p >= 5 and a(2*p) == (1 + 6*p + 4*p^2) ( mod p^3 ) for all prime p (apply Mestrovic, equation 37). - Peter Bala, Feb 23 2020
Comments