cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136211 Denominators in continued fraction [0; 1, 3, 1, 3, 1, 3, ...].

Original entry on oeis.org

1, 4, 5, 19, 24, 91, 115, 436, 551, 2089, 2640, 10009, 12649, 47956, 60605, 229771, 290376, 1100899, 1391275, 5274724, 6665999, 25272721, 31938720, 121088881, 153027601, 580171684, 733199285, 2779769539, 3512968824
Offset: 1

Views

Author

Gary W. Adamson, Dec 21 2007

Keywords

Comments

A136210(n)/A136211(n) tends to 0.791287847... = [0; 1, 3, 1, 3, 1, 3, ...] = (sqrt(21) - 3)/2 = the inradius of a right triangle with hypotenuse 3, legs 2 and sqrt(21).
The number 0.791287847... = (sqrt(21) - 3)/2 arises in finding a number which is 5 less than its square; the result is: 2.791287847... because (2.791287847...)^2 = 7.791287847... In general the quadratic equation for finding such numbers is x^2 - x = N, so x = (1 + sqrt(1 + 4N))/2. - Alexander R. Povolotsky, Dec 23 2007
Prepending a 1 to the sequence gives [1, 1, 4, 5, 19, 24, ...]. This is the sequence of Lehmer numbers U_n(sqrt(R),Q) with the parameters R = 3 and Q = -1. It is a strong divisibility sequence, that is, GCD(a(n),a(m)) = a(GCD(n,m)) for all natural numbers n and m. - Peter Bala, May 14 2014

Examples

			a(4) = 19 = 3*a(3) + a(2) = 3*5 + 4.
a(5) = 24 = a(4) + a(3) = 19 + 5.
T^3 = [19, 72; 24, 91], where the bottom row [24, 91] = [a(5), a(6)].
		

Crossrefs

Cf. A136210.

Programs

  • Mathematica
    Denominator[NestList[(3/(3+#))&,0,60]] (* Vladimir Joseph Stephan Orlovsky, Apr 13 2010 *)
    a[n_] := FromContinuedFraction[ Join[{0}, 3 - 2*Array[Mod[#, 2]&, n]]] // Denominator; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, May 15 2014 *)
  • PARI
    x='x + O('x^25); Vec(x*(1+4*x-x^3)/(1-5*x^2+x^4)) \\ G. C. Greubel, Feb 18 2017

Formula

a(1) = 1, a(2) = 4, then for n>2, a(2n) = 3*a(2n-1) + a(2n-2); a(2n-1) = a(2n-2) + a(2n-3). Let T = the 2 X 2 matrix [1, 3; 1, 4]. Then T^n = [A136210(2n-1), A136210(2n); a(2n-1), a(2n)].
From R. J. Mathar, May 18 2008: (Start)
O.g.f.: x*(1+4*x-x^3)/(1-5*x^2+x^4).
a(2*n) = A004253(n+1).
a(2*n+1) = A004254(n). (End)
a(n)*a(n+1) = A099025(n). - R. K. Guy, May 18 2008
{-a(n) + 5 a(n + 2) - a(n + 4), a(0) = 1, a(1) = 4, a(2) = 5, a(3) = 19}. - Robert Israel, May 14 2008