A136215 Triangle T, read by rows, where T(n,k) = A007559(n-k)*C(n,k) where A007559 equals the triple factorials in column 0.
1, 1, 1, 4, 2, 1, 28, 12, 3, 1, 280, 112, 24, 4, 1, 3640, 1400, 280, 40, 5, 1, 58240, 21840, 4200, 560, 60, 6, 1, 1106560, 407680, 76440, 9800, 980, 84, 7, 1, 24344320, 8852480, 1630720, 203840, 19600, 1568, 112, 8, 1, 608608000, 219098880, 39836160
Offset: 0
Examples
Column k of T = column 0 of U^(k+1), while column k of U = column 0 of T^(3k+1) where U = A136214 and column k of V = column 0 of T^(3k+2) where V = A112333. This triangle T begins: 1; 1, 1; 4, 2, 1; 28, 12, 3, 1; 280, 112, 24, 4, 1; 3640, 1400, 280, 40, 5, 1; 58240, 21840, 4200, 560, 60, 6, 1; 1106560, 407680, 76440, 9800, 980, 84, 7, 1; ... Triangle U = A136214 begins: 1; 1, 1; 4, 4, 1; 28, 28, 7, 1; 280, 280, 70, 10, 1; 3640, 3640, 910, 130, 13, 1; ... with triple factorials A007559 in column 0. Triangle V = A112333 begins: 1; 2, 1; 10, 5, 1; 80, 40, 8, 1; 880, 440, 88, 11, 1; 12320, 6160, 1232, 154, 14, 1; ... with triple factorials A008544 in column 0.
Links
- G. C. Greubel, Rows n=0..100 of triangle, flattened
- M. Janjic, Some classes of numbers and derivatives, JIS 12 (2009) 09.8.3
- Wikipedia, Sheffer sequence
Programs
-
Mathematica
T[n_, k_]:= Binomial[n, k]*If[n - k == 0, 1, Product[3*j + 1, {j, 0, n - k - 1}]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Jun 10 2018 *)
-
PARI
T(n,k)=binomial(n,k)*if(n-k==0,1,prod(j=0,n-k-1,3*j+1))
Formula
Column k of T = column 0 of U^(k+1) (matrix power) for k>=0 where U = A136214. Matrix square equals A136216, where A136216(n,k) = A008544(n-k)*C(n,k) where A008544 are also triple factorials.
From Peter Bala, Jul 10 2008: (Start)
T(n,k) = (3*n-3*k-2)*T(n-1,k) + T(n-1,k-1).
E.g.f. exp(x*y)/(1-3*y)^(1/3) = 1 + (1+x)*y + (4+2*x+x^2)*y^2/2! + ... . (End)
Comments