A136302 Transform of A000027 by the T_{1,1} transformation (see link).
2, 6, 15, 35, 81, 188, 437, 1016, 2362, 5491, 12765, 29675, 68986, 160373, 372822, 866706, 2014847, 4683951, 10888865, 25313540, 58846841, 136802308, 318026782, 739322571, 1718716457, 3995531011, 9288482690, 21593102505, 50197873146, 116695897118, 271285047567
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Richard Choulet, Curtz-like transformation.
- Index entries for linear recurrences with constant coefficients, signature (3,-2,1).
Programs
-
Magma
I:=[2,6,15]; [n le 3 select I[n] else 3*Self(n-1) -2*Self(n-2) +Self(n-3): n in [1..41]]; // G. C. Greubel, Apr 12 2021
-
Maple
a:= n-> (<<6|2|1>>. <<3|1|0>, <-2|0|1>, <1|0|0>>^n)[1, 3]: seq(a(n), n=1..40); # Alois P. Heinz, Aug 14 2008
-
Mathematica
LinearRecurrence[{3,-2,1}, {2,6,15}, 41] (* G. C. Greubel, Apr 12 2021 *)
-
Sage
def A136302_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( x*(2+x^2)/(1-3*x+2*x^2-x^3) ).list() a=A136302_list(41); a[1:] # G. C. Greubel, Apr 12 2021
Formula
G.f.: z*(2 + z^2)/(1 - 3*z + 2*z^2 - z^3).
a(n+3) = 3*a(n+2) - 2*a(n+1) + a(n) (n>=0). - Richard Choulet, Apr 07 2009
Extensions
More terms from Alois P. Heinz, Aug 14 2008