cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A136308 a(n) = (10^2^n - 1)/9.

Original entry on oeis.org

1, 11, 1111, 11111111, 1111111111111111, 11111111111111111111111111111111, 1111111111111111111111111111111111111111111111111111111111111111
Offset: 0

Views

Author

Ctibor O. Zizka, Mar 22 2008

Keywords

Comments

More generally, reading in base B >= 2: a(n) = (B^2^n - 1)/(B-1).
Recurrence: a(n) = a(n-1)*(B^K + 1) and a(0)=1 where K = floor(log_B a(n-1)) + 1.
B = 2 gives A051179; B = 3 gives A059918.

Crossrefs

Cf. A000042 (repunits).
In other bases: A051179, A059918.

Programs

Formula

a(n) = a(n-1)*(10^K + 1) and a(0)=1 where K=floor(log_10 a(n-1)) + 1 = 2^n + 1.
a(n) = A000042(A000079(n)) = A007088(A051179(n)) = A007089(A059918(n)).
A007953(a(n)) = 2^n. - Stefano Spezia, Mar 27 2025

Extensions

Edited by Jason Kimberley, Dec 18 2012