cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A051179 a(n) = 2^(2^n) - 1.

Original entry on oeis.org

1, 3, 15, 255, 65535, 4294967295, 18446744073709551615, 340282366920938463463374607431768211455, 115792089237316195423570985008687907853269984665640564039457584007913129639935
Offset: 0

Views

Author

Alan DeKok (aland(AT)ox.org)

Keywords

Comments

In a tree with binary nodes (0, 1 children only), the maximum number of unique child nodes at level n.
Number of binary trees (each vertex has 0, or 1 left, or 1 right, or 2 children) such that all leaves are at level n. Example: a(1) = 3 because we have (i) root with a left child, (ii) root with a right child and (iii) root with two children. a(n) = A000215(n) - 2. - Emeric Deutsch, Jan 20 2004
Similarly, this is also the number of full balanced binary trees of height n. (There is an obvious 1-to-1 correspondence between the two sets of trees.) - David Hobby (hobbyd(AT)newpaltz.edu), May 02 2010
Partial products of A000215.
The first 5 terms n (only) have the property that phi(n)=(n+1)/2, where phi(n) = A000010(n) is Euler's totient function. - Lekraj Beedassy, Feb 12 2007
If A003558(n) is of the form 2^n and A179480(n+1) is even, then (2^(A003558(n)) - 1) is in A051179. Example: A003558(25) = 8 with A179480(25) = 4, even. Then (2^8 - 1) = 255. - Gary W. Adamson, Aug 20 2012
For any odd positive a(0), the sequence defined by a(n) = a(n-1) * (a(n-1) + 2) gives a constructive proof that there exist integers with at least n distinct prime factors, e.g., a(n), since omega(a(n)) >= n. As a corollary, this gives a constructive proof of Euclid's theorem stating that there are infinitely many primes. - Daniel Forgues, Mar 07 2017
From Sergey Pavlov, Apr 24 2017: (Start)
I conjecture that, for n > 7, omega(a(n)) > omega(a(n-1)) > n.
It seems that the largest prime divisor p(n+1) of a(n+1) is always bigger than the largest prime divisor of a(n): p(n+1) > p(n). For 3 < n < 8, p(n+1) > 100 * p(n).
(End)
It appears that a(n) is the integer whose bits indicate the possible subset sums of the first n powers of two. For another example, see the calculation for primes at A368491 - Yigit Oktar, Mar 20 2025

Examples

			15 = 3*5; 255 = 3*5*17; 65535 = 3*5*17*257; ... - _Daniel Forgues_, Mar 07 2017
		

References

  • M. Aigner and G. M. Ziegler, Proofs from The Book, Springer-Verlag, Berlin, 1999; see p. 4.

Crossrefs

Programs

Formula

a(n) = A000215(n) - 2.
a(n) = (a(n-1) + 1)^2 - 1, a(0) = 1. [ or a(n) = a(n-1)(a(n-1) + 2) ].
1 = 2/3 + 4/15 + 16/255 + 256/65535 + ... = Sum_{n>=0} A001146(n)/a(n+1) with partial sums: 2/3, 14/15, 254/255, 65534/65535, ... - Gary W. Adamson, Jun 15 2003
a(n) = b(n-1) where b(1)=1, b(n) = Product_{k=1..n-1} (b(k) + 2). - Benoit Cloitre, Sep 13 2003
A136308(n) = A007088(a(n)). - Jason Kimberley, Dec 19 2012
A000215(n) = a(n+1) / a(n). - Daniel Forgues, Mar 07 2017
Sum_{n>=0} 1/a(n) = A048649. - Amiram Eldar, Oct 27 2020

A059918 a(n) = (3^(2^n)-1)/2.

Original entry on oeis.org

1, 4, 40, 3280, 21523360, 926510094425920, 1716841910146256242328924544640, 5895092288869291585760436430706259332839105796137920554548480
Offset: 0

Views

Author

Henry Bottomley, Feb 08 2001

Keywords

Comments

Denominator of b(n) where b(n) = 1/2*(b(n-1) + 1/b(n-1)), b(0)=2. - Vladeta Jovovic, Aug 15 2002

Crossrefs

Cf. A059917 (numerators).

Programs

  • Mathematica
    Array[(3^(2^#) - 1)/2 &, 8, 0] (* Michael De Vlieger, Feb 05 2022 *)
  • PARI
    { for (n=0, 11, write("b059918.txt", n, " ", (3^(2^n) - 1)/2); ) } \\ Harry J. Smith, Jun 30 2009

Formula

a(n) = a(n-1)*(3^(2^(n-1))+1) with a(0) = 1.
a(n) = (3^(2^n)-1)/2 = (A059723(n+1)-A059723(n))/A059723(n) = A059917(n)-1 = a(n-1)*A059919(n-1) = a(n-1)*(A011764(n-1)+1)
1 = Sum_{n>=0} 3^(2^n)/a(n+1). 1 = 3/4 + 9/40 + 81/3280 + 6561/21523360 + ...; with partial sums: 3/4, 39/40, 3279/3280, 21523359/21523360, ..., (a(n)-1)/a(n), ... . - Gary W. Adamson, Jun 22 2003
A136308(n) = A007089(a(n)). - Jason Kimberley, Dec 19 2012

A266926 a(0)=0, a(1)=1, a(2)=10; for n>2, a(n) = concat(a(1), ..., a(n-1)).

Original entry on oeis.org

0, 1, 10, 110, 110110, 110110110110, 110110110110110110110110, 110110110110110110110110110110110110110110110110, 110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110110
Offset: 0

Views

Author

Giovanni Teofilatto, Jan 06 2016

Keywords

Comments

Decimal conversions: 0, 1, 2, 6, 54, 3510, 14380470, 241264265751990, 67909853583655146508751957430, ... . (See A267348.) - Michael De Vlieger, Jan 06 2016
After 10, a(n) is '110' repeated 2^(n-3) times. Therefore, for n>3, a(n) is the concatenation of a(n-1) with itself.
After 1, each term with the 0's omitted is a member of A136308.
The number of digits in a(n) is A098011(n+1).
The number of digits in a(n+2)/a(n+1) gives A103204 with 2 repeated.

Examples

			a(3) = concat(1, 10, 110) = 110110.
a(4) = concat(1, 10, 110, 110110) = 110110110110.
		

Crossrefs

Programs

  • Magma
    [n le 2 select n*5^(n-1) else 110*(10^(3*2^(n-3))-1)/999: n in [0..8]]; // Bruno Berselli, Jan 29 2016
  • Mathematica
    a = {0, 1}; Do[AppendTo[a, FromDigits@ Flatten@ Map[IntegerDigits@ # &, If[n < 2, Reverse@ a, a]]], {n, 8}]; a (* Michael De Vlieger, Jan 06 2016 *)

Formula

a(n) = 110*(10^(3*2^(n-3))-1)/999 for n>2. - Bruno Berselli, Jan 29 2016

Extensions

Definition by Michael De Vlieger, Jan 06 2016
Edited by Editors of the OEIS, Jan 29 2016

A382461 a(n) is the smallest number whose sum of digits is 2^n.

Original entry on oeis.org

1, 2, 4, 8, 79, 5999, 19999999, 299999999999999, 49999999999999999999999999999, 899999999999999999999999999999999999999999999999999999999, 799999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999
Offset: 0

Views

Author

Stefano Spezia, Mar 27 2025

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=10^(Floor[2^n/9])(1+2^n-9Floor[2^n/9])-1; Array[a,11,0]
  • Python
    def A382461(n): return (lambda x:(x[1]+1)*10**x[0]-1)(divmod(1<Chai Wah Wu, Mar 29 2025

Formula

a(n) = 10^(floor(2^n/9))*(1 + 2^n - 9*floor(2^n/9)) - 1.
a(n) = A051885(2^n).
Showing 1-4 of 4 results.