A136370 Numerator of 1 - Sum_{k=1..n} (-1)^(k+1)/prime(k)^2.
3, 31, 739, 37111, 4446331, 756766039, 217803584371, 78887714418031, 41637516941042299, 35066922176061410359, 33657455280704707522099, 46117280789485930425170431, 77468081652660425646977758411, 143331051198625503752852285686039
Offset: 1
Examples
The first few fractions are 3/4, 31/36, 739/900, 37111/44100, 4446331/5336100, 756766039/901800900, ... = A136370/A061742. - _Petros Hadjicostas_, May 14 2020
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..195
Crossrefs
Programs
-
Mathematica
Table[Numerator[1 - Sum[(-1)^(k+1)/Prime[k]^2, {k, 1, n}]], {n, 1, 20}]
-
PARI
a(n) = numerator(1 - sum(k=1, n, (-1)^(k+1)/prime(k)^2)); \\ Michel Marcus, May 14 2020
-
Python
from sympy import prime from fractions import Fraction from itertools import accumulate, count, islice def A136370gen(): yield from map(lambda x: (1-x).numerator, accumulate(Fraction((-1)**(k+1), prime(k)**2) for k in count(1))) print(list(islice(A136370gen(), 14))) # Michael S. Branicky, Jun 26 2022
Formula
Extensions
Definition corrected by Alexander Adamchuk, Sep 15 2010
a(14) and beyond from Michael S. Branicky, Jun 26 2022
Comments