cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A136371 Numbers k such that A136370(k) is prime.

Original entry on oeis.org

1, 2, 3, 5, 46, 227, 232, 336, 360, 3919
Offset: 1

Views

Author

Alexander Adamchuk, Dec 27 2007

Keywords

Crossrefs

Cf. A024530: numerator of Sum_{k=1..n} (-1)^k/prime(k).
Cf. A136368: numerator of Sum_{k=1..n} (-1)^(k+1)/prime(k)^2.
Cf. A136370: numerator of 1 - Sum_{k=1..n} (-1)^(k+1)/prime(k)^2.

Programs

  • Mathematica
    f=1; Do[ p=Prime[n]; f=f - (-1)^(n+1)*1/p^2; g=Numerator[f] ;If[ PrimeQ[g], Print[ {n, g} ] ], {n, 1, 100} ]
  • Python
    # uses A136370gen() and imports from A136370
    from sympy import isprime
    def agen(): yield from (k for k, ak in enumerate(A136370gen(), 1) if isprime(ak))
    print(list(islice(agen(), 5))) # Michael S. Branicky, Jun 26 2022

Extensions

More terms added and edited by Alexander Adamchuk, Sep 15 2010
a(10) from Robert Price, Aug 29 2019

A061742 a(n) is the square of the product of first n primes.

Original entry on oeis.org

1, 4, 36, 900, 44100, 5336100, 901800900, 260620460100, 94083986096100, 49770428644836900, 41856930490307832900, 40224510201185827416900, 55067354465423397733736100, 92568222856376731590410384100, 171158644061440576710668800200900
Offset: 0

Views

Author

Jason Earls, Jun 21 2001

Keywords

Comments

Squares of primorials (first definition, A002110).
Exponential superabundant numbers: numbers k with a record value of the exponential abundancy index, A051377(k)/k > A051377(m)/m for all m < k. - Amiram Eldar, Apr 13 2019
Numbers k with a record value of A056170(k), or least number k with A056170(k) = n. - Amiram Eldar, Apr 15 2019
Empirically, these are possibly the denominators for 1 - Sum_{k=1..n} (-1)^(k+1)/prime(k)^2. The numerators are listed in A136370. - Petros Hadjicostas, May 14 2020
a(n) = least k such that rad(k/rad(k)) = A002110(n). - David James Sycamore, Jun 10 2024

Examples

			a(4) = 2^2 * 3^2 * 5^2 * 7^2 = 44100.
		

Crossrefs

Programs

  • Magma
    [n eq 0 select 1 else (&*[NthPrime(j)^2: j in [1..n]]): n in [0..20]]; // G. C. Greubel, Apr 19 2019
    
  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, ithprime(n)^2*a(n-1)) end:
    seq(a(n), n=0..15);  # Alois P. Heinz, May 14 2020
  • Mathematica
    a[n_]:=Product[Prime[i]^2, {i, 1, n}]; (* Vladimir Joseph Stephan Orlovsky, Dec 05 2008 *)
  • PARI
    for(n=0,20,print1(prod(k=1,n, prime(k)^2), ", "))
    
  • PARI
    { n=-1; m=1; forprime (p=2, prime(101), write("b061742.txt", n++, " ", m^2); m*=p ) } \\ Harry J. Smith, Jul 27 2009
    
  • Sage
    [product(nth_prime(j)^2 for j in (1..n)) for n in (0..20)] # G. C. Greubel, Apr 19 2019

Formula

a(n) = Product_{j=1..n} A001248(j). - Alois P. Heinz, May 14 2020
a(n) = A228593(n) * A000040(n), for n>0. - Marco Zárate, Jun 11 2024

A136365 Numbers k such that A075986(k) is prime.

Original entry on oeis.org

1, 171, 210, 550, 1445, 1809, 2176, 2719
Offset: 1

Views

Author

Alexander Adamchuk, Dec 27 2007

Keywords

Crossrefs

Cf. A075986 (numerator of 1 + 1/p(1)^2 + ... + 1/p(n)^2, where p(k) = prime(k)).

Programs

  • Mathematica
    f=1; Do[ p=Prime[n]; f=f + 1/p^2; g=Numerator[ f ]; If[ PrimeQ[ g ], Print[ {n, g} ] ], {n, 1, 210} ]

Extensions

a(4)-a(8) from Robert Price, Aug 26 2019

A136366 Numbers k such that A024530(k) is prime.

Original entry on oeis.org

3, 4, 5, 10, 21, 31, 55, 77, 121, 135, 148, 192, 425, 570, 612, 649, 1293, 2326, 3646
Offset: 1

Views

Author

Alexander Adamchuk, Dec 27 2007

Keywords

Crossrefs

Cf. A024530 (numerator of Sum_{k=1..n} (-1)^k / prime(k)).

Programs

  • Mathematica
    f=0; Do[ p=Prime[n]; f=f + (-1)^(n+1)*1/p; g=Numerator[f] ;If[ PrimeQ[g], Print[ {n, g} ] ], {n, 1, 150} ]

Extensions

a(12)-a(16) from Alexander Adamchuk, Sep 15 2010
a(17)-a(19) from Robert Price, Aug 27 2019

A136368 Numerator of Sum_{k=1..n} (-1)^(k+1)/prime(k)^2.

Original entry on oeis.org

1, 5, 161, 6989, 889769, 145034861, 42816875729, 15196271678069, 8132911703794601, 6790008314246422541, 6567054920481119894801, 8950073675937467308565669, 15100141203716305943432625689
Offset: 1

Views

Author

Alexander Adamchuk, Dec 27 2007

Keywords

Crossrefs

Programs

  • Magma
    [Numerator(&+[(-1)^(k+1)/NthPrime(k)^2:k in [1..n]]): n in [1..13]]; // Marius A. Burtea, Aug 26 2019
  • Mathematica
    Table[Numerator[Sum[(-1)^(k+1)/Prime[k]^2, {k, 1, n}]], {n, 1, 20}]

A136369 Numbers k such that A136368(k) is prime.

Original entry on oeis.org

2, 5, 6, 8, 18, 20, 98, 1863
Offset: 1

Views

Author

Alexander Adamchuk, Dec 27 2007

Keywords

Crossrefs

Cf. A024530 (numerator of Sum_{k=1..n} (-1)^k / prime(k)).
Cf. A136368 (numerator of Sum_{k=1..n} (-1)^(k+1)/prime(k)^2).

Programs

  • Mathematica
    f=0; Do[ p=Prime[n]; f=f + (-1)^(n+1)*1/p^2; g=Numerator[f] ;If[ PrimeQ[g], Print[ {n, g} ] ], {n, 1, 100} ]

Extensions

a(8) from Robert Price, Aug 28 2019

A136367 Numbers k such that A024529(k+1) is prime.

Original entry on oeis.org

2, 3, 4, 5, 11, 59, 397, 613, 906, 1560, 2162, 2915, 5211
Offset: 1

Views

Author

Alexander Adamchuk, Dec 27 2007

Keywords

Comments

A024529(n+1) = numerator of 1 + Sum_{j=1..n} (-1)^j/prime(j): 1, 5, 19, 163, 1583, 22889, 359083, 7333087, 158961311, 4832970889, 143352404329, ...

Crossrefs

Cf. A024529: numerator of 1 + Sum_{k=1..n-1} (-1)^k/prime(k).

Programs

  • Mathematica
    f=1; Do[ p=Prime[n]; f=f + (-1)^n*1/p; g=Numerator[f] ;If[ PrimeQ[g], Print[ {n, g} ] ], {n, 1, 60} ]

Extensions

a(7)-a(9) from Alexander Adamchuk, Sep 15 2010
a(10) from Vincenzo Librandi, Aug 26 2019
a(11)-a(13) from Robert Price, Aug 29 2019
Showing 1-7 of 7 results.