A136392 a(n) = 6*n^2 - 10*n + 5.
1, 9, 29, 61, 105, 161, 229, 309, 401, 505, 621, 749, 889, 1041, 1205, 1381, 1569, 1769, 1981, 2205, 2441, 2689, 2949, 3221, 3505, 3801, 4109, 4429, 4761, 5105, 5461, 5829, 6209, 6601, 7005, 7421, 7849, 8289, 8741, 9205, 9681, 10169
Offset: 1
Links
- John Elias, Illustration: Centered nesting cube frames.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Haskell
a136392 n = 2 * n * (3*n - 5) + 5 -- Reinhard Zumkeller, Feb 06 2012
-
Mathematica
Table[6n^2-10n+5,{n,50}] (* or *) LinearRecurrence[{3,-3,1},{1,9,29},50] (* Harvey P. Dale, Mar 05 2023 *)
-
PARI
a(n)=6*n^2-10*n+5 \\ Charles R Greathouse IV, Nov 29 2011
Formula
a(n) = n*(3*n - 2) + (n-1)*(3*n - 5), n > 1.
a(n) = a(n-1) + 12*n - 16 (with a(1)=1). - Vincenzo Librandi, Nov 24 2010
G.f.: x*(1+x)*(1+5*x)/(1-x)^3. - Colin Barker, Jan 09 2012
a(n) = 1 + A033580(n-1). - Omar E. Pol, Jul 18 2012
From Elmo R. Oliveira, Oct 31 2024: (Start)
E.g.f.: exp(x)*(2*x*(3*x - 2) + 5) - 5.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)
Comments