cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A136468 Column 1 of triangle A136467 (scaled): a(n) = A136467(n+1,1)/2^n.

Original entry on oeis.org

1, 2, 8, 106, 4728, 697288, 341056672, 561635549128, 3172355531357504, 62573893999774791616, 4377792727679018712191744, 1100465546170585425117622597248, 1004426091768772936789017838438890496
Offset: 0

Views

Author

Paul D. Hanna, Dec 31 2007

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=local(M=matrix(n+2,n+2,r,c,binomial(r*2^(c-2),c-1)),P); P=matrix(n+2,n+2,r,c,binomial((r+1)*2^(c-2),c-1));(P~*M~^-1)[n+2,2]/2^n}

A136469 Column 2 of triangle A136467 (scaled): a(n) = A136467(n+2,2)/4^n.

Original entry on oeis.org

1, 4, 36, 972, 82692, 22668224, 20480767016, 62399482333360, 654732295896172624, 24092174555680443592896, 3156168229958886081384337440, 1490220874303979634022445823087616
Offset: 0

Views

Author

Paul D. Hanna, Dec 31 2007

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=local(M=matrix(n+3,n+3,r,c,binomial(r*2^(c-2),c-1)),P); P=matrix(n+3,n+3,r,c,binomial((r+1)*2^(c-2),c-1));(P~*M~^-1)[n+3,3]/4^n}

A136462 Square table, read by antidiagonals, where T(n,k) = C((n+1)*2^(k-1), k) for n>=0, k>=0.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 6, 4, 1, 4, 15, 56, 70, 1, 5, 28, 220, 1820, 4368, 1, 6, 45, 560, 10626, 201376, 906192, 1, 7, 66, 1140, 35960, 1712304, 74974368, 621216192, 1, 8, 91, 2024, 91390, 7624512, 927048304, 94525795200, 1429702652400, 1, 9, 120, 3276, 194580, 24040016, 5423611200, 1708566412608, 409663695276000, 11288510714272000, 1, 10, 153, 4960, 367290, 61124064, 21193254160, 13161885792000, 10895665708319184, 6208116950265950720, 312268282598377321216
Offset: 0

Views

Author

Paul D. Hanna, Dec 31 2007

Keywords

Comments

Row n equals column 0 of matrix product A136467^(n+1) for n>=0.

Examples

			1,1,1,4,70,4368,906192,621216192,1429702652400,11288510714272000,...;
1,2,6,56,1820,201376,74974368,94525795200,409663695276000,...;
1,3,15,220,10626,1712304,927048304,1708566412608,...;
1,4,28,560,35960,7624512,5423611200,13161885792000,...;
1,5,45,1140,91390,24040016,21193254160,63815149590720,...;
1,6,66,2024,194580,61124064,64300886496,231207760388736,...;
1,7,91,3276,367290,134153712,163995687856,685581099291712,...;
1,8,120,4960,635376,264566400,368532802176,1756185841659392,...; ...
Triangle A136467 begins:
1;
1,1;
1,4,1;
4,32,16,1;
70,848,576,64,1;
4368,75648,62208,9216,256,1;
906192,22313216,21169152,3792896,143360,1024,1;
621216192,21827627008,23212261376,4793434112,223215616,2228224,4096,1;
such that row n of A136462 equals column 0 of A136467^(n+1).
		

Crossrefs

Cf. rows: A136465, A014070, A136466, A101346; A136463 (diagonal); A136467.

Programs

  • PARI
    {T(n,k)=binomial((n+1)*2^(k-1),k)}
    for(n=0,10,for(k=0,10,print1(T(n,k),", "));print(""))
    
  • PARI
    /* T(n,k) = Coefficient of x^k in series: */
    {T(n,k)=polcoeff(sum(i=0,k,((n+1)/2)^i*log(1+2^i*x +x*O(x^k))^i/i!),k)}
    for(n=0,10,for(k=0,10,print1(T(n,k),", "));print(""))

Formula

O.g.f. of row n: Sum_{k>=0} ((n+1)/2)^k * log(1 + 2^k*x)^k / k! = Sum_{k>=0} C((n+1)*2^(k-1), k) * x^k for n>=0.

Extensions

More terms and b-file added by Paul D. Hanna, Jul 02 2016

A136465 Row 0 of square array A136462: a(n) = C(2^(n-1), n) for n>=0.

Original entry on oeis.org

1, 1, 1, 4, 70, 4368, 906192, 621216192, 1429702652400, 11288510714272000, 312268282598377321216, 30813235422145714150738944, 11005261717918037175659349191168, 14391972654784168932973746746691440640, 69538271351155829150354851003285125277716480, 1250303357941919088313448625534941836891635347865600
Offset: 0

Views

Author

Paul D. Hanna, Dec 31 2007

Keywords

Comments

a(n) is found in row n, column 0, of triangle A136467 for n>=0.
For n > 0, number of increasing integer sequences 1 <= a_1 < ... < a_n <= 2^(n-1). - Charles R Greathouse IV, Aug 08 2010
The (n-1)-dimensional hypercube has 2^(n-1) corners. There are binomial(2^(n-1),n) ways of selecting a set of n corners. So a(n) is the number of simplices (hyper-tetrahedra) with vertices defined by a corner subset of a (n-1)-dimensional hypercube. (This count includes degenerate polytopes with zero volume.) - R. J. Mathar, Jan 16 2016

Examples

			From _Paul D. Hanna_, Sep 26 2010: (Start)
G.f.: A(x) = 1 + x + x^2 + 4*x^3 + 70*x^4 + 4368*x^5 +...
A(x) = 1 + log(1+2*x)/2 + log(1 + 2^2*x)^2/(2!*2^2) + log(1 + 2^3*x)^3/(3!*2^3) + log(1 + 2^4*x)^4/(4!*2^4) +... (End)
		

Crossrefs

Cf. A136462; other rows: A014070, A136466, A101346; A136467.

Programs

  • Mathematica
    Table[Binomial[2^(n-1),n], {n,0,15}] (* Vaclav Kotesovec, Jul 02 2016 *)
  • PARI
    {a(n)=binomial(2^(n-1),n)}
    for(n=0,20,print1(a(n),", "))
    
  • PARI
    /* a(n) = Coefficient of x^k in series: */
    {a(n)=polcoeff(sum(i=0,n,(1/2)^i*log(1+2^i*x +x*O(x^n))^i/i!),n)}
    for(n=0,20,print1(a(n),", "))
    
  • PARI
    {a(n)=polcoeff(sum(m=0,n,log(1+2^m*x+x*O(x^n))^m/(m!*2^m)),n)}
    for(n=0,20,print1(a(n),", ")) \\ Paul D. Hanna, Sep 26 2010

Formula

a(n) = [x^n] Sum_{i>=0} (1/2)^i * log(1 + 2^i*x)^i/i!.
O.g.f.: Sum_{n>=0} log(1 + 2^n*x)^n / (n!*2^n). - Paul D. Hanna, Sep 26 2010
a(n) ~ 2^(n*(n-1)) / n!. - Vaclav Kotesovec, Jul 02 2016

A136470 Triangle T, read by rows, where column 0 of T^m = {C(m*2^n, n), n>=0} for all m.

Original entry on oeis.org

1, 2, 1, 6, 8, 1, 56, 128, 32, 1, 1820, 6048, 2176, 128, 1, 201376, 912128, 419328, 34816, 512, 1, 74974368, 449708544, 249300992, 26198016, 548864, 2048, 1, 94525795200, 739136655360, 477013868544, 59943682048, 1604059136, 8650752, 8192, 1, 409663695276000, 4132411271661568, 3028532448264192, 439222754869248, 14159357935616, 98723430400, 136839168, 32768, 1, 6208116950265950720, 80121787455478857728, 65415571433959456768, 10679727629898088448, 399723620798038016, 3391703461396480, 6141702569984, 2172649472, 131072, 1
Offset: 0

Views

Author

Paul D. Hanna, Dec 31 2007

Keywords

Comments

Column 0 of T^(n+1) = row 2n+1 of square array A136462 defined by: A136462(n,k) = C((n+1)*2^(k-1), k); T^n denotes the n-th matrix power of this triangle T = A136470.

Examples

			Triangle T begins:
1;
2, 1;
6, 8, 1;
56, 128, 32, 1;
1820, 6048, 2176, 128, 1;
201376, 912128, 419328, 34816, 512, 1;
74974368, 449708544, 249300992, 26198016, 548864, 2048, 1;
94525795200, 739136655360, 477013868544, 59943682048, 1604059136, 8650752, 8192, 1;
409663695276000, 4132411271661568, 3028532448264192, 439222754869248, 14159357935616, 98723430400, 136839168, 32768, 1; ...
Column 0 of T^m is given by: [T^m](n,0) = C(m*2^n, n) for n>=0.
		

Crossrefs

Cf. columns: A014070, A136471, A136472; A136467 (matrix square-root); A136462.

Programs

  • PARI
    {T(n,k)=local(M=matrix(n+1,n+1,r,c,binomial(r*2^(c-2),c-1)),P); P=matrix(n+1,n+1,r,c,binomial((r+1)*2^(c-2),c-1));((P~*M~^-1)^2)[n+1,k+1]}
    for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))

Formula

Equals the matrix square of triangle A136467.
Diagonals: T(n+1,n) = 2*4^n; T(n+2,n) = 2*8^n*(2^(n+2) + n-1).

A179430 Triangular matrix T where column 0 of T^m equals C(m*3^(n-1), n) at row n for n>=0, m>=0.

Original entry on oeis.org

1, 1, 1, 3, 9, 1, 84, 405, 81, 1, 17550, 121500, 32805, 729, 1, 25621596, 247203171, 82255257, 2539107, 6561, 1, 268715232324, 3543210805275, 1382411964132, 53628242751, 199290375, 59049, 1, 21091830512086620, 373203783345533355
Offset: 0

Views

Author

Paul D. Hanna, Jul 20 2010

Keywords

Examples

			Triangle T begins:
1;
1, 1;
3, 9, 1;
84, 405, 81, 1;
17550, 121500, 32805, 729, 1;
25621596, 247203171, 82255257, 2539107, 6561, 1;
268715232324, 3543210805275, 1382411964132, 53628242751, 199290375, 59049, 1;
21091830512086620, 373203783345533355, 165018275857291311, 7607829219099993, 36456526295226, 15884240049, 531441, 1; ...
where column 0 of T equals A179431(n) = C(3^(n-1), n):
[1, 1, 3, 84, 17550, 25621596, 268715232324, ...]. ...
Illustrate row n in column 0 of T^m equals C(m*3^(n-1), n) as follows.
Matrix square T^2 begins:
1;
2, 1;
15, 18, 1;
816, 1539, 162, 1;
316251, 833490, 124659, 1458, 1;
873642672, 3060203490, 585411786, 9861183, 13122, 1; ...
where column 0 of T^2 equals A179432(n) = C(2*3^(n-1), n):
[1, 2, 15, 816, 316251, 873642672, 17743125256857, ...]. ...
Matrix cube T^3 begins:
1;
3, 1;
36, 27, 1;
2925, 3402, 243, 1;
1663740, 2667411, 275562, 2187, 1;
6774333588, 14164214850, 1896890076, 21966228, 19683, 1; ...
where column 0 of T^3 equals A136393(n) = C(3^n, n):
[1, 3, 36, 2925, 1663740, 6774333588, 204208594169580, ...].
		

Crossrefs

Programs

  • PARI
    {T(n, k)=local(M=matrix(n+1, n+1, r, c, binomial(r*3^(c-2), c-1)), P); P=matrix(n+1, n+1, r, c, binomial((r+1)*3^(c-2), c-1)); (P~*M~^-1)[n+1, k+1]}

A136463 Diagonal of square array A136462: a(n) = C((n+1)*2^(n-1), n) for n>=0.

Original entry on oeis.org

1, 2, 15, 560, 91390, 61124064, 163995687856, 1756185841659392, 75079359427627897200, 12831653340946454374300160, 8777916355714456994772455584000, 24054320541767107204031746600673906688
Offset: 0

Views

Author

Paul D. Hanna, Dec 31 2007

Keywords

Comments

a(n) is divisible by (n+1) for n>=0: a(n)/(n+1) = A136464(n).

Crossrefs

Programs

  • Mathematica
    Table[Binomial[(n+1)2^(n-1),n],{n,0,15}]  (* Harvey P. Dale, Apr 20 2011 *)
  • PARI
    a(n)=binomial((n+1)*2^(n-1),n)
    
  • PARI
    /* a(n) = Coefficient of x^n in series: */
    a(n)=polcoeff(sum(i=0,n,((n+1)/2)^i*log(1+2^i*x +x*O(x^n))^i/i!),n)

Formula

a(n) = [x^n] Sum_{i>=0} ((n+1)/2)^i * log(1 + 2^i*x)^i/i!.
a(n) is found in row n, column 0, of matrix power A136467^(n+1) for n>=0.
a(n) ~ exp(n+1) * 2^(n*(n-1)) / sqrt(2*Pi*n). - Vaclav Kotesovec, Jul 02 2016

A136466 Row 2 of square array A136462: a(n) = C(3*2^(n-1), n) for n>=0.

Original entry on oeis.org

1, 3, 15, 220, 10626, 1712304, 927048304, 1708566412608, 10895665708319184, 244373929798154341120, 19561373281624772727757056, 5658395223117478029148167447552, 5975982733408602667847206514763365888
Offset: 0

Views

Author

Paul D. Hanna, Dec 31 2007

Keywords

Comments

a(n) is found in row n, column 0, of matrix cube A136467^3 for n>=0.

Crossrefs

Cf. A136462; other rows: A136465, A014070, A101346; A136467.

Programs

  • Mathematica
    Table[Binomial[3*2^(n-1),n], {n,0,15}] (* Vaclav Kotesovec, Jul 02 2016 *)
  • PARI
    a(n)=binomial(3*2^(n-1),n)
    
  • PARI
    /* T(n,k) = Coefficient of x^k in series: */ a(n)=polcoeff(sum(i=0,n,(3/2)^i*log(1+2^i*x +x*O(x^n))^i/i!),n)

Formula

a(n) = [x^n] Sum_{i>=0} (3/2)^i * log(1 + 2^i*x)^i/i!.
a(n) ~ 3^n * 2^(n*(n-1)) / n!. - Vaclav Kotesovec, Jul 02 2016
Showing 1-8 of 8 results.