cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A179433 Column 1 of triangle A179430.

Original entry on oeis.org

1, 9, 405, 121500, 247203171, 3543210805275, 373203783345533355, 299059356226224581923626, 1870707073035678423776605220985, 93075349691648156957700437094276630105
Offset: 0

Views

Author

Paul D. Hanna, Jul 21 2010

Keywords

Comments

T=A179430 is a triangular matrix where column 0 of T^m equals C(m*3^(n-1), n) at row n for n>=0, m>=0.

Examples

			G.f.: A(x) = 1 + 9*x + 405*x^2 + 121500*x^3 + 247203171*x^4 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(M=matrix(n+2, n+2, r, c, binomial(r*3^(c-2), c-1)), P); P=matrix(n+2, n+2, r, c, binomial((r+1)*3^(c-2), c-1)); (P~*M~^-1)[n+2, 2]}

A179434 Row sums of triangle A179430.

Original entry on oeis.org

1, 2, 13, 571, 172585, 357625693, 5248165593907, 566958191345077996, 465798195439736703244606, 2982999334066325867630228374270, 151658307264909973462110073089257457502
Offset: 0

Views

Author

Paul D. Hanna, Jul 21 2010

Keywords

Comments

T=A179430 is a Triangular matrix where column 0 of T^m equals C(m*3^(n-1), n) at row n for n>=0, m>=0.

Crossrefs

Programs

  • PARI
    {a(n)=local(M=matrix(n+2, n+2, r, c, binomial(r*3^(c-2), c-1)), P); P=matrix(n+2, n+2, r, c, binomial((r+1)*3^(c-2), c-1)); sum(k=0,n,(P~*M~^-1)[n+1, k+1])}

A179431 a(n) = binomial(3^(n-1), n).

Original entry on oeis.org

1, 1, 3, 84, 17550, 25621596, 268715232324, 21091830512086620, 12814543323816738705045, 61742372998425082372103866380, 2399699340005498870742886195375900380, 761689137813999393167583510790986701377432464, 1992997938492157367948224731863936229108552184201415196
Offset: 0

Views

Author

Paul D. Hanna, Jul 20 2010

Keywords

Comments

Equals column 0 of triangle T=A179430 where column 0 of T^m equals C(m*3^(n-1), n) at row n for n>=0, m>=0.

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 84*x^3 + 17550*x^4 + 25621596*x^5 +...
A(x) = 1 + log(1+3*x)/3 + log(1+3^2*x)^2/(3^2*2!) + log(1+3^3*x)^3/(3^3*3!) + log(1+3^4*x)^4/(3^4*4!) +...
		

Crossrefs

Programs

  • Mathematica
    Table[Binomial[3^(n-1),n], {n,0,15}] (* Vaclav Kotesovec, Jul 02 2016 *)
  • PARI
    a(n)=binomial(3^(n-1), n)
    
  • PARI
    /* G.f. A(x) as Sum of Series: */
    {a(n)=polcoeff(sum(k=0, n, (1/3)^k*log(1+3^k*x +x*O(x^n))^k/k!), n)}

Formula

G.f.: A(x) = Sum_{n>=0} (1/3)^n * log(1 + 3^n*x)^n / n!.
a(n) ~ 3^(n*(n-1)) / n!. - Vaclav Kotesovec, Jul 02 2016

Extensions

Terms a(11) and beyond from Andrew Howroyd, Apr 13 2021

A179432 a(n) = C(2*3^(n-1), n).

Original entry on oeis.org

1, 2, 15, 816, 316251, 873642672, 17743125256857, 2739097835911193328, 3301626910467952067341626, 31698997711344336177849363574320, 2460103385023594223069956382123378560008
Offset: 0

Views

Author

Paul D. Hanna, Jul 20 2010

Keywords

Comments

Equals column 0 in the matrix square of triangle T=A179430 where column 0 of T^m equals C(m*3^(n-1), n) at row n for n>=0, m>=0.

Examples

			G.f.: A(x) = 1 + 2*x + 15*x^2 + 816*x^3 + 316251*x^4 +...
A(x) = 1 + 2*log(1+3*x)/3 + 2^2*log(1+3^2*x)^2/(3^2*2!) + 2^3*log(1+3^3*x)^3/(3^3*3!) + 2^4*log(1+3^4*x)^4/(3^4*4!) +...
		

Crossrefs

Programs

  • Mathematica
    Table[Binomial[2*3^(n-1),n], {n,0,15}] (* Vaclav Kotesovec, Jul 02 2016 *)
  • PARI
    {a(n)=binomial(2*3^(n-1), n)}
    
  • PARI
    /* G.f. A(x) as Sum of Series: */
    {a(n)=polcoeff(sum(k=0, n, (2/3)^k*log(1+3^k*x +x*O(x^n))^k/k!), n)}

Formula

G.f.: A(x) = Sum_{n>=0} (2/3)^n * log(1 + 3^n*x)^n / n!.
a(n) ~ 2^n * 3^(n*(n-1)) / n!. - Vaclav Kotesovec, Jul 02 2016
Showing 1-4 of 4 results.