A179431 a(n) = binomial(3^(n-1), n).
1, 1, 3, 84, 17550, 25621596, 268715232324, 21091830512086620, 12814543323816738705045, 61742372998425082372103866380, 2399699340005498870742886195375900380, 761689137813999393167583510790986701377432464, 1992997938492157367948224731863936229108552184201415196
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + 3*x^2 + 84*x^3 + 17550*x^4 + 25621596*x^5 +... A(x) = 1 + log(1+3*x)/3 + log(1+3^2*x)^2/(3^2*2!) + log(1+3^3*x)^3/(3^3*3!) + log(1+3^4*x)^4/(3^4*4!) +...
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..40
Programs
-
Mathematica
Table[Binomial[3^(n-1),n], {n,0,15}] (* Vaclav Kotesovec, Jul 02 2016 *)
-
PARI
a(n)=binomial(3^(n-1), n)
-
PARI
/* G.f. A(x) as Sum of Series: */ {a(n)=polcoeff(sum(k=0, n, (1/3)^k*log(1+3^k*x +x*O(x^n))^k/k!), n)}
Formula
G.f.: A(x) = Sum_{n>=0} (1/3)^n * log(1 + 3^n*x)^n / n!.
a(n) ~ 3^(n*(n-1)) / n!. - Vaclav Kotesovec, Jul 02 2016
Extensions
Terms a(11) and beyond from Andrew Howroyd, Apr 13 2021
Comments