A136483 Number of unit square lattice cells inside quadrant of origin-centered circle of diameter n.
0, 0, 1, 1, 3, 4, 6, 8, 13, 15, 19, 22, 28, 30, 37, 41, 48, 54, 64, 69, 77, 83, 94, 98, 110, 119, 131, 139, 152, 162, 172, 183, 199, 208, 226, 234, 253, 263, 281, 294, 308, 322, 343, 357, 377, 390, 412, 424, 447, 465, 488, 504, 528, 545, 567, 585, 612, 628, 654
Offset: 1
Examples
a(5) = 3 because a circle of radius 5/2 in the first quadrant encloses (2,1), (1,1), (1,2).
Links
- Ivan Panchenko, Table of n, a(n) for n = 1..1000
Programs
-
Magma
A136483:= func< n | n eq 1 select 0 else (&+[Floor(Sqrt((n/2)^2-j^2)): j in [1..Floor(n/2)]]) >; [A136483(n): n in [1..100]]; // G. C. Greubel, Jul 28 2023
-
Mathematica
Table[Sum[Floor[Sqrt[(n/2)^2 -k^2]], {k,Floor[n/2]}], {n,100}]
-
PARI
a(n) = sum(k=1, n\2, sqrtint((n/2)^2 - k^2)); \\ Michel Marcus, Jul 28 2023
-
SageMath
def A136483(n): return sum(isqrt((n/2)^2-j^2) for j in range(1,(n//2)+1)) [A136483(n) for n in range(1,101)] # G. C. Greubel, Jul 28 2023
Formula
a(n) = Sum_{k=1..floor(n/2)} floor(sqrt((n/2)^2 - k^2)).
Lim_{n -> oo} a(n)/(n^2) -> Pi/16 (A019683).
a(n) = [x^(n^2)] (theta_3(x^4) - 1)^2 / (4 * (1 - x)). - Ilya Gutkovskiy, Nov 23 2021